首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19579篇
  免费   522篇
  国内免费   177篇
测绘学   428篇
大气科学   197篇
地球物理   528篇
地质学   1800篇
海洋学   228篇
天文学   16538篇
综合类   77篇
自然地理   482篇
  2024年   40篇
  2023年   73篇
  2022年   142篇
  2021年   88篇
  2020年   89篇
  2019年   154篇
  2018年   54篇
  2017年   43篇
  2016年   70篇
  2015年   168篇
  2014年   133篇
  2013年   128篇
  2012年   196篇
  2011年   214篇
  2010年   265篇
  2009年   1569篇
  2008年   1500篇
  2007年   1773篇
  2006年   1792篇
  2005年   1589篇
  2004年   1729篇
  2003年   1474篇
  2002年   1289篇
  2001年   1137篇
  2000年   916篇
  1999年   880篇
  1998年   1055篇
  1997年   219篇
  1996年   101篇
  1995年   261篇
  1994年   287篇
  1993年   120篇
  1992年   70篇
  1991年   85篇
  1990年   76篇
  1989年   131篇
  1988年   82篇
  1987年   81篇
  1986年   74篇
  1985年   37篇
  1984年   26篇
  1983年   22篇
  1982年   3篇
  1980年   4篇
  1979年   3篇
  1977年   6篇
  1905年   3篇
  1900年   3篇
  1897年   7篇
  1877年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The mid-Holocene eruptive products of Nevado de Longavívolcano (36·2°S, Chile) are the only reported occurrenceof adakitic volcanic rocks in the Quaternary Andean SouthernVolcanic Zone (33–46°S). Dacites of this volcano arechemically distinct from other evolved magmas of the regionin that they have high La/Yb (15–20) and Sr/Y (60–90)ratios and systematically lower incompatible element contents.An origin by partial melting of high-pressure crustal sourcesseems unlikely from isotopic and trace element considerations.Mafic enclaves quenched into one of the dacites, on the otherhand, constitute plausible parental magmas. Dacites and maficenclaves share several characteristics such as mineral chemistry,whole-rock isotope and trace element ratios, highly oxidizingconditions (NNO + 1·5 to >NNO + 2, where NNO is thenickel–nickel oxide buffer), and elevated boron contents.A two-stage mass-balance crystal fractionation model that matchesboth major and trace elements is proposed to explain magmaticevolution from the least evolved mafic enclave to the dacites.Amphibole is the main ferromagnesian phase in both stages ofthis model, in agreement with the mineralogy of the magmas.We also describe cumulate-textured xenoliths that correspondvery closely to the solid assemblages predicted by the model.We conclude that Nevado de Longaví adakitic dacites arethe products of polybaric fractional crystallization from exceptionallywater-rich parent magmas. These basaltic magmas are inferredto be related to an exceptionally high, but transient inputof slab-derived fluids released from serpentinite bodies hostedin the oceanic Mocha Fracture Zone, which projects beneath Nevadode Longaví. Fractional crystallization that is modallydominated by amphibole, with very minor garnet extraction, isa mechanism for generating adakitic magmas in cold subductionzones where a high flux of slab-derived fluids is present. KEY WORDS: adakite; amphibole; Andes; differentiation; Southern Volcanic Zone  相似文献   
992.
The Miocene–Quaternary Jemez Mountains volcanic field(JMVF) is the site of the Valles caldera and associated BandelierTuff. Caldera formation was preceded by > 10 Myr of volcanismdominated by intermediate composition rocks (57–70% SiO2)that contain components derived from the lithospheric mantleand Precambrian crust. Simple mixing between crust-dominatedsilicic melts and mantle-dominated mafic magmas, fractionalcrystallization, and assimilation accompanied by fractionalcrystallization are the principal mechanisms involved in theproduction of these intermediate lavas. A variety of isotopicallydistinct crustal sources were involved in magmatism between13 and 6 Ma, but only one type (or two very similar types) ofcrust between 6 and 2 Ma. This long history constitutes a recordof accommodation of mantle-derived magma in the crust by meltingof country rock. The post-2 Ma Bandelier Tuff and associatedrhyolites were, in contrast, generated by melting of hybridizedcrust in the form of buried, warm intrusive rocks associatedwith pre-6 Ma activity. Major shifts in the location, styleand geochemical character of magmatism in the JMVF occur withina few million years after volcanic maxima and may correspondto pooling of magma at a new location in the crust followingsolidification of earlier magma chambers that acted as trapsfor basaltic replenishment. KEY WORDS: crustal anatexis; fractional crystallization; Jemez Mountain Volcanic Field; Valles Caldera; radiogenic isotopes; trace elements  相似文献   
993.
Basaltic magmas found in intraplate suites appear to followmore than one differentiation trend. Many ocean island suitesfollow the ocean island tholeiitic trend, with the basalts differentiatingfrom olivine tholeiite through basaltic andesite, andesite,and dacite to sodic rhyolite. Many continental intraplate magmaticregimes, such as those of the Snake River Plain and the plutonicsequences associated with massif anorthosites, follow the potassicsilica-saturated alkalic trend, in which basalt differentiatesfrom olivine tholeiite through ferrobasalt (jotunite or ferrodiorite),Fe-rich intermediate rocks (trachybasalt or monzonite), andtrachyte (syenite) to potassic rhyolites and granites. Crystallizationexperiments on an olivine tholeiite from the Snake River Plainshow that the basaltic portions of the ocean island tholeiitictrend and the potassic silica-saturated alkalic trend (whichleads to strong alkali, P, Ti, and Fe enrichment and silicadepletion) can arise from the same ‘dry’ tholeiiticparental magma. These compositional differences are inducedby changes in phase equilibria as a function of pressure, withthe ocean island tholeiitic series arising from crystal–liquiddifferentiation at low pressure and the potassic silica-saturatedalkalic series arising via differentiation at elevated pressures. KEY WORDS: tholeiite differentiation; experimental petrology; phase equilibria; ferrodiorite; ferrobasalt  相似文献   
994.
Geochemical Evidence for Slab Melting in the Trans-Mexican Volcanic Belt   总被引:3,自引:0,他引:3  
Geochemical studies of Plio-Quaternary volcanic rocks from theValle de Bravo–Zitácuaro volcanic field (VBZ) incentral Mexico indicate that slab melting plays a key role inthe petrogenesis of the Trans-Mexican Volcanic Belt. Rocks fromthe VBZ are typical arc-related high-Mg andesites, but two differentrock suites with distinct trace element patterns and isotopiccompositions erupted concurrently in the area, with a traceelement character that is also distinct from that of other Mexicanvolcanoes. The geochemical differences between the VBZ suitescannot be explained by simple crystal fractionation and/or crustalassimilation of a common primitive magma, but can be reconciledby the participation of different proportions of melts derivedfrom the subducted basalt and sediments interacting with themantle wedge. Sr/Y and Sr/Pb ratios of the VBZ rocks correlateinversely with Pb and Sr isotopic compositions, indicating thatthe Sr and Pb budgets are strongly controlled by melt additionsfrom the subducted slab. In contrast, an inverse correlationbetween Pb(Th)/Nd and 143Nd/144Nd ratios, which extend to lowerisotopic values than those for Pacific mid-ocean ridge basalts,indicates the participation of an enriched mantle wedge thatis similar to the source of Mexican intraplate basalts. In addition,a systematic decrease in middle and heavy rare earth concentrationsand Nb/Ta ratios with increasing SiO2 contents in the VBZ rocksis best explained if these elements are mobilized to some extentin the subduction flux, and suggests that slab partial fusionoccurred under garnet amphibolite-facies conditions. KEY WORDS: arcs; mantle; Mexico; sediment melting; slab melting  相似文献   
995.
The Eastern Layered Intrusion of the Rum Layered Suite comprisespaired peridotite and allivalite (troctolite and gabbro) layersforming 16 macro-rhythmic units. Whereas the majority of thesemacro-units are believed to have formed by a process of crystal–liquiddifferentiation involving successive accumulation of crystalsfrom multiple picritic replenishments of the chamber, the Unit9 peridotite is interpreted as a layer-parallel picrite intrusion.Closely correlated with this discontinuous peridotite body isa distinctive feature generally known as the Wavy Horizon, whichdivides the overlying allivalite into a lower troctolite andan upper gabbro along a well-defined undulating contact. Wepropose that the Wavy Horizon is a metasomatic feature formedconsequent to the removal of clinopyroxene from an originalgabbroic mush. Foundering of the mush into the picritic sillresulted in the replacement of the original interstitial liquidby one saturated only in olivine (± plagioclase). Progressivethrough-flow of this liquid resulted in the stripping out ofclinopyroxene from the lower parts of the allivalite. We interpretthe Wavy Horizon as a reaction front, representing the pointat which the invading liquid became saturated in clinopyroxene.The distinctive pyroxene-enriched zone immediately above theWavy Horizon could have formed when mixing of the interstitialliquids on either side of the reaction front formed a supercooledliquid oversaturated in pyroxene, as a result of the curvatureof the olivine–plagioclase–clinopyroxene cotectic.The presence of many such approximately layer-parallel features,defined by differences in pyroxene content, in the Eastern LayeredIntrusion of Rum suggests that such an infiltration–reactionprocess was not unique to Unit 9. KEY WORDS: cumulate; infiltration metasomatism; Rum; Eastern Layered Intrusion  相似文献   
996.
Do We Really Need Mantle Components to Define Mantle Composition?   总被引:2,自引:0,他引:2  
We discuss the concept of components in the Earth's mantle startingfrom a petrological and geochemical approach, but adopting anew method of projection of geochemical and isotopic data. Thisallows the compositional variability of magmatic associationsto be evaluated in multi-dimensional space, thus simultaneouslyaccounting for a large number of compositional variables. Wedemonstrate that ocean island basalts (OIB) and mid-ocean ridgebasalts (MORB) are derived from a marble-cake mantle, in whichdifferent degrees of partial melting of recycled lithosphere,which are heterogeneous in age and composition, contribute tothe magma genesis. This view is supported by the variabilityin the geochemical and isotopic signatures of OIB that are observedon the scale of a single ocean island as well as on that ofan ocean, mostly varying between two extreme compositions, thatare not strictly related to the commonly accepted mantle components(DMM, EMI, EMII, HIMU). Rather they are a distinctive featureof the mantle source sampled at each ocean island and are stronglydependent on the Pb isotope system. We recommend a change inperspective in studies of MORB–OIB geochemistry from onebased on physically distinct mantle components to a model basedon the existence of a marble-cake-like upper mantle. Althoughresembling the statistical upper mantle, this model impliesthat geochemical homogenization can be attained only withinthe limits of local mantle composition, so that a world-wideuniform depleted reservoir cannot be sampled by simply extendingthe volume of the region undergoing partial melting. KEY WORDS: geochemistry; isotope; mantle; OIB  相似文献   
997.
A continuous-coring borehole recently drilled at Camaldoli dellaTorre on the southern slopes of Somma–Vesuvius providesconstraints on the volcanic and magmatic history of the Vesuvianvolcanic area since c. 126 ka BP. The cored sequence includesvolcanic units, defined on stratigraphical, sedimentological,petrological and geochemical grounds, emitted from both localand distal vents. Some of these units are of known age, suchas one Phlegraean pre-Campanian Ignimbrite, Campanian Ignimbrite(39 ka), Neapolitan Yellow Tuff (14· 9 ka) and VesuvianPlinian deposits, which helps to constrain the relative ageof the other units. The main rock types encountered are shoshonite,phonotephrite, latite, trachyte and phonolite. The sequenceincludes, from the base upwards: a thick succession of pyroclasticunits emplaced between 126 and 39 ka, most of them attributedto eruptions that occurred in the Phlegraean area; the CampanianIgnimbrite; the products of a local tuff cone formed between39 ka and the deposition of the products of the earliest activityof the Mt. Somma volcano; the products of the Somma–Vesuviusvolcano, which include from the base upwards a thick sequenceof lavas, pyroclastic rocks and the products of a local spattercone dated between 3· 7 ka and AD 79. The data obtainedfrom the study of the borehole show that, before the CampanianIgnimbrite eruption, low-energy explosive volcanism took placein the Vesuvian area, whereas mostly high-energy explosive eruptionscharacterized the Campi Flegrei activity. In the Vesuvian area,Campanian Ignimbrite deposition was followed by the eruptionof a local tuff cone and a long repose time, which predatedthe formation of the Mt. Somma edifice. Since 18· 3 ka(Pomici di Base eruption) the activity of Somma–Vesuviusbecame mostly explosive with rare lava effusions. The shallowestcored deposits belong to the Camaldoli della Torre cone, formedbetween the Pomici di Avellino and Pomici di Pompei eruptions(3· 7 ka–AD 79). New geochemical and Sr–Nd–Pb–B-isotopicdata on samples from the drilled core, together with those availablefrom the literature, allow us to further distinguish the volcanicrocks as a function of both their provenance (i.e. Phlegraeanor Vesuvian areas) and age, and to identify different magmaticprocesses acting through time in the Vesuvian mantle source(s)and during magma ascent towards the surface. Isotopically distinctmagmas, rising from a mantle source variably contaminated byslab-derived components, stagnated at mid-crustal depths (8–10km below sea level) where magmas differentiated and were probablycontaminated. Contamination occurred either with Hercynian continentalcrust, mostly during the oldest stages of Vesuvian activity(from 39 to 16 ka), or with Mesozoic limestone, mostly duringrecent Vesuvian activity. Energy constrained assimilation andfractional crystallization (EC-AFC) modelling results show thatcontamination with Hercynian crust probably occurred duringdifferentiation from shoshonite to latite. Contamination withlimestone, which is not well constrained with the availabledata, might have occurred only during the transition from shoshoniteto tephrite. From the ‘deep’ reservoir, magmas rosetowards a series of shallow reservoirs, in which they differentiatedfurther, mixed, and fed volcanic activity. KEY WORDS: Somma–Vesuvius; crustal contamination; source heterogeneity; radiogenic and stable isotopes; magmatic system  相似文献   
998.
Melt inclusion and host glass compositions from the easternend of the Southwest Indian Ridge show a progressive depletionin light rare earth elements (LREE), Na8 and (La/Sm)n, but anincrease in Fe8, from the NE (64°E) towards the SW (49°E).These changes indicate an increase in the degree of mantle meltingtowards the SW and correlate with a shallowing of the ridgeaxial depth and increase in crustal thickness. In addition,LREE enrichment in both melt inclusions and host glasses fromthe NE end of the ridge are compatible with re-fertilizationof a depleted mantle source. The large compositional variations(e.g. P2O5 and K2O) of the melt inclusions from the NE end ofthe ridge (64°E), coupled with low Fe8 values, suggest thatmelts from the NE correspond to a variety of different batchesof melts generated at shallow levels in the mantle melting column.In contrast, the progressively more depleted compositions andhigher Fe8 values of the olivine- and plagioclase-hosted meltinclusions at the SW end of the studied region (49°E), suggestthat these melt inclusions represent batches of melt generatedby higher degrees of melting at greater mean depths in the mantlemelting column. Systematic differences in Fe8 values betweenthe plagioclase- and the olivine-hosted melt inclusions in theSW end (49°E) of the studied ridge area, suggest that theplagioclase-hosted melt inclusions represent final batches ofmelt generated at the top of the mantle melting column, whereasthe olivine-hosted melt inclusions correspond to melts generatedfrom less depleted, more fertile mantle at greater depths. KEY WORDS: basalt; melt inclusions; olivine; plagioclase; Southwest Indian Ridge  相似文献   
999.
A geochemical and petrological study of Miocene to recent alkalibasalts, basanites, hawaiites, mugearites, trachytes, and phonoliteserupted within the Harrat Ash Shamah volcanic field was performedto reconstruct the magmatic evolution of southern Syria. Themajor element composition of the investigated lavas is mainlycontrolled by fractional crystallization of olivine, clinopyroxene,± Fe–Ti oxides and ± apatite; feldspar fractionationis restricted to the most evolved lavas. Na2O and SiO2 variationswithin uncontaminated, primitive lavas as well as variably fractionatedheavy rare earth element ratios suggest a formation by variabledegrees of partial melting of different garnet peridotite sourcestriggered, probably, by changes in mantle temperature. The isotopicrange as well as the variable trace element enrichment observedin the lavas imply derivation from both a volatile- and incompatibleelement-enriched asthenosphere and from a plume component. Inaddition, some lavas have been affected by crustal contamination.This effect is most prominent in evolved lavas older than 3·5Ma, which assimilated 30–40% of crustal material. In general,the periodicity of volcanism in conjunction with temporal changesin lava composition and melting regime suggest that the Syrianvolcanism was triggered by a pulsing mantle plume located underneathnorthwestern Arabia. KEY WORDS: 40Ar/39Ar ages; intraplate volcanism; mantle plume; partial melting; Syria  相似文献   
1000.
Extensive photometric and spectroscopic observations of SN 1994aj until 540 d after maximum light have been obtained. The photometry around maximum suggests that the SN belongs to the Type II Linear class, with a peak absolute magnitude of M V∼−17.8 (assuming H 0=75 km s−1 Mpc−1). The spectra of SN 1994aj were unusual, with the presence of a narrow line with a P Cygni profile on top of the broad Balmer line emission. This narrow feature is attributed to the presence of a dense superwind surrounding the SN. At 100–120 d after maximum light the SN ejecta start to interact with this circumstellar material. The SN luminosity decline rates slowed down [γ R =0.46 mag (100 d)−1], becoming less steep than the average late luminosity decline of normal SN II [∼1 mag (100 d)−1]. This dense ( ˙M / u W∼1015 g cm−1) wind was confined to a short distance from the progenitor ( R out=∼5×1016 cm), and results from a very strong mass-loss episode ( ˙M =10−3 M⊙ yr−1), which terminated shortly before explosion (∼5–10 yr).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号