首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1948篇
  免费   159篇
  国内免费   99篇
测绘学   51篇
大气科学   145篇
地球物理   328篇
地质学   277篇
海洋学   54篇
天文学   1253篇
综合类   29篇
自然地理   69篇
  2024年   4篇
  2023年   7篇
  2022年   15篇
  2021年   14篇
  2020年   23篇
  2019年   28篇
  2018年   21篇
  2017年   24篇
  2016年   21篇
  2015年   41篇
  2014年   44篇
  2013年   72篇
  2012年   58篇
  2011年   65篇
  2010年   73篇
  2009年   162篇
  2008年   164篇
  2007年   205篇
  2006年   159篇
  2005年   111篇
  2004年   110篇
  2003年   108篇
  2002年   106篇
  2001年   88篇
  2000年   99篇
  1999年   92篇
  1998年   96篇
  1997年   27篇
  1996年   29篇
  1995年   29篇
  1994年   11篇
  1993年   16篇
  1992年   8篇
  1991年   8篇
  1990年   18篇
  1989年   12篇
  1988年   10篇
  1987年   7篇
  1986年   9篇
  1984年   5篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有2206条查询结果,搜索用时 31 毫秒
981.
Cool stars at giant and supergiant evolutionary phases present low-velocity and high-density winds, responsible for the observed high mass-loss rates. Although presenting high luminosities, radiation pressure on dust particles is not sufficient to explain the wind acceleration process. Among the possible solutions to this still unsolved problem, Alfvén waves are, probably, the most interesting for their high efficiency in transfering energy and momentum to the wind. Typically, models of Alfvén wave driven winds result in high-velocity winds if they are not highly damped. In this work, we determine self-consistently the magnetic field geometry and solve the momentum, energy and mass conservation equations, to demonstrate that even a low-damped Alfvén wave flux is able to reproduce the low-velocity wind. We show that the magnetic flux tubes expand with a super-radial factor of S > 30 near the stellar surface, larger than that used in previous semi-empirical models. The rapid expansion results in a strong spatial dilution of the wave flux. We obtained the wind parameter profiles for a typical supergiant star of  16 M  . The wind is accelerated in a narrow region, coincident with the region of high divergence of the magnetic field lines, up to 100 km s−1. For the temperature, we obtained a slight decrease near the surface for low-damped waves, because the wave heating mechanism is less effective than the radiative losses. The peak temperature occurs at   r ≃ 1.5  r 0  reaching 6000 K. Propagating outwards, the wind cools down mainly due to adiabatic expansion.  相似文献   
982.
金文敬  陈力 《天文学进展》2005,23(2):190-194
简述已有几个天体测量标准天区的大小、星数以及恒星位置和自行的精度;给出LAMOST天体测量标准天区选择的原则;介绍研究疏散星团和古德带附近星团观测的意义;列出13个LAMOST天体测量标准天区J2000.0历元的赤经和赤纬、银经和银纬,如果疏散星团位于这个标准天区,也给出它们的日心距、红化值、金属丰度和年龄。  相似文献   
983.
984.
We study Parker instability (PI) operating in a non-adiabatic, gravitationally stratified, interstellar medium. We discuss models with two kinds of heating mechanisms. The first one results from photoionization models. The other, relying on supplemental sources, has been postulated by Reynolds, Haffner & Tufte. The cooling rate, corresponding to radiative losses, is an approximation to the one given by Dalgarno & McCray. An unperturbed state of the system represents a magnetohydrostatic and thermal equilibrium. We perform linear stability analysis by solving the boundary value problem. We find that the maximum growth rate of PI rises for increasing magnitudes of non-adiabatic effects. In the pure photoionization model, the maximum growth rate of the general non-adiabatic case coincides with the isothermal limit. Adding other sources of heat leads to a maximum growth rate that is larger than the one corresponding to the isothermal limit. We find that the influence of the supplemental heating on PI also leads to a decrease in temperature in magnetic valleys. Finally, we conclude that the initial gas cooling due to the action of PI may promote a subsequent onset of thermal instability in magnetic valleys and formation of giant molecular clouds.  相似文献   
985.
A numerical model of idealized sunspots and pores is presented, where axisymmetric cylindrical domains are used with aspect ratios (radius versus depth) up to 4. The model contains a compressible plasma with density and temperature gradients simulating the upper layer of the Sun's convection zone. Non-linear magnetohydrodynamic equations are solved numerically and time-dependent solutions are obtained where the magnetic field is pushed to the centre of the domain by convection cells. This central magnetic flux bundle is maintained by an inner convection cell, situated next to it and with a flow such that there is an inflow at the top of the numerical domain towards the flux bundle. For aspect ratio 4, a large inner cell persists in time, but for lower aspect ratios it becomes highly time dependent. For aspect ratios 2 and 3 this inner convection cell is smaller, tends to be situated towards the top of the domain next to the flux bundle, and appears and disappears with time. When it is gone, the neighbouring cell (with an opposite sense of rotation, i.e. outflow at the top) pulls the magnetic field away from the central axis. As this happens a new inner cell forms with an inflow which pushes the magnetic field towards the centre. This suggests that to maintain their form, both pores and sunspots need a neighbouring convection cell with inflow at the top towards the magnetic flux bundle. This convection cell does not have to be at the top of the convection zone and could be underneath the penumbral structure around sunspots. For an aspect ratio of 1, there is not enough space in the numerical domain for magnetic flux and convection to separate. In this case the solution oscillates between two steady states: two dominant convection cells threaded by magnetic field and one dominant cell that pushes magnetic flux towards the central axis.  相似文献   
986.
Photochemical Chapman theory predicts that the square of peak electron density, Nm, in the dayside ionosphere of Mars is proportional to the cosine of solar zenith angle. We use Mars Global Surveyor Radio Science profiles of electron density to demonstrate that this relationship is generally satisfied and that positive or negative residuals between observed and predicted values of are caused by periods of relatively high or low solar flux, respectively.Understanding the response of the martian ionosphere to changes in solar flux requires simultaneous observations of the martian ionosphere and of solar flux at Mars, but solar flux measurements are only available at Earth. Since the Sun's output varies both in time and with solar latitude and longitude, solar flux at Mars is not simply related to solar flux at Earth by an inverse-square law. We hypothesize that, when corrected for differing distances from the Sun, solar fluxes at Mars and Earth are identical when shifted in time by the interval necessary for the Sun to rotate through the Earth–Sun–Mars angle.We perform four case studies that quantitatively compare time series of Nm at Mars to time series of solar flux at Earth and find that our hypothesis is satisfied in the three of them that used ionospheric data from the northern hemisphere. We define a solar flux proxy at Mars based upon the E10.7 proxy for solar flux at Earth and use our best case study to derive an equation that relates Nm to this proxy. We discuss how the ionosphere of Mars can be used to infer the presence of solar active regions not facing the Earth.Our fourth case study uses ionospheric observations from the southern hemisphere at latitudes where there are strong crustal magnetic anomalies. These profiles do not have Chapman-like shapes, unlike those of the other three case studies. We split this set of measurements into two subsets, corresponding to whether or not they were made at longitudes with strong crustal magnetic anomalies. Neither subset shows Nm responding to changes in solar flux in the manner that we observe in the three other case studies.We find many similarities in ionospheric responses to short-term and long-term changes in solar flux for Venus, Earth, and Mars. We consider the implications of our results for different parametric equations that have been published describing this response.  相似文献   
987.
The interaction is investigated between a white dwarf magnetosphere and a red dwarf secondary star in an asynchronous AM Herculis binary. The poloidal magnetic field diffuses into the secondary and shearing motions, due to differential rotation between the star and the magnetosphere, generate azimuthal field. The effects of diffusion and field advection caused by a poloidal flow induced by magnetospheric motions are calculated. Outward radial motions reduce the amount of field penetration and limit the stellar magnetic torque at higher degrees of asynchronism. A resonance torque curve results, similar to the case of a precessing magnetic field with vacuum surroundings. Inward motions in the secondary increase field penetration, allowing the torque to reach higher values for larger degrees of asynchronism.  相似文献   
988.
A model is constructed for the magnetic field of the star HD 187474, which has a very long axial rotation period P = 2345d. It turns out that the structure of the magnetic field is best described by a model of a displaced (Δα = 0.1) dipole inclined to the axis of rotation by an angle β = 24°. The star is inclined to the line of sight by an angle i = 86°. Because of the displaced dipole the magnitude of the magnetic field differs at the poles: Bp = +6300 and 11600 G. A Mercator map of the distribution of the magnetic field over the surface is obtained. The 7 slowly rotating CP stars studied thus far have an average angle β = 62°, which equals the average value for a random orientation of dipoles. __________ Translated from Astrofizika, Vol. 48, No. 4, pp. 575–583 (November 2005).  相似文献   
989.
990.
We investigate a stationary pair production cascade in the outer magnetosphere of an isolated, spinning neutron star. The charge depletion due to global flows of charged particles, causes a large electric field along the magnetic field lines. Migratory electrons and/or positrons are accelerated by this field to radiate gamma-rays via curvature and inverse-Compton processes. Some of such gamma-rays collide with the X-rays to materialize as pairs in the gap. The replenished charges partially screen the electric field, which is self-consistently solved together with the energy distribution of particles and gamma-rays at each point along the field lines. By solving the set of Maxwell and Boltzmann equations, we demonstrate that an external injection of charged particles at nearly Goldreich-Julian rate does not quench the gap but shifts its position and that the particle energy distribution cannot be described by a power-law. The injected particles are accelerated in the gap and escape from it with large Lorentz factors. We show that such escaping particles migrating outside of the gap contribute significantly to the gamma-ray luminosity for young pulsars and that the soft gamma-ray spectrum between 100 MeV and 3 GeV observed for the Vela pulsar can be explained by this component. We also discuss that the luminosity of the gamma-rays emitted by the escaping particles is naturally proportional to the square root of the spin-down luminosity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号