首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1948篇
  免费   159篇
  国内免费   99篇
测绘学   51篇
大气科学   145篇
地球物理   328篇
地质学   277篇
海洋学   54篇
天文学   1253篇
综合类   29篇
自然地理   69篇
  2024年   4篇
  2023年   7篇
  2022年   15篇
  2021年   14篇
  2020年   23篇
  2019年   28篇
  2018年   21篇
  2017年   24篇
  2016年   21篇
  2015年   41篇
  2014年   44篇
  2013年   72篇
  2012年   58篇
  2011年   65篇
  2010年   73篇
  2009年   162篇
  2008年   164篇
  2007年   205篇
  2006年   159篇
  2005年   111篇
  2004年   110篇
  2003年   108篇
  2002年   106篇
  2001年   88篇
  2000年   99篇
  1999年   92篇
  1998年   96篇
  1997年   27篇
  1996年   29篇
  1995年   29篇
  1994年   11篇
  1993年   16篇
  1992年   8篇
  1991年   8篇
  1990年   18篇
  1989年   12篇
  1988年   10篇
  1987年   7篇
  1986年   9篇
  1984年   5篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有2206条查询结果,搜索用时 703 毫秒
511.
The potential of the non-axisymmetric magnetic instability to transport angular momentum and to mix chemicals is probed considering the stability of a nearly uniform toroidal field between conducting cylinders with different rotation rates. The fluid between the cylinders is assumed as incompressible and to be of uniform density. With a linear theory, the neutral-stability maps for   m = 1  are computed. Rigid rotation must be sub-Alfvénic to allow instability, while for differential rotation also an unstable domain with faster rotation exists [azimuthal magnetorotational instability (AMRI)]. The rotational quenching of the magnetic instability is strongest for magnetic Prandtl number of the order of unity.
The effective angular momentum transport by the instability is directed outwards for subrotation. The resulting magnetic-induced eddy viscosity exceeds the microscopic values by factors of 10–100. This is only true for AMRI; in the opposite case of Tayler instability, the viscosity results are very small.
The same instability also quenches concentration gradients of chemicals by dynamic fluctuations. The corresponding diffusion coefficient always remains smaller than the magnetic-generated eddy viscosity. A Schmidt number of the order of 30 is found as the ratio of the effective viscosity and the diffusion coefficient. For not too strong magnetic fields in the radiation zone of young solar-type stars, the magnetic instability transports much more angular momentum than that it mixes chemicals.  相似文献   
512.
We investigate the launching of outflows from the disc–magnetosphere boundary of slowly and rapidly rotating magnetized stars using axisymmetric and exploratory 3D magnetohydrodynamic simulations. We find long-lasting outflows in the following cases. (1) In the case of slowly rotating stars , a new type of outflow, a conical wind , is found and studied in simulations. The conical winds appear in cases where the magnetic flux of the star is bunched up by the disc into an X-type configuration. The winds have the shape of a thin conical shell with a half-opening angle  θ∼ 30°–40°  . About 10–30 per cent of the disc matter flows from the inner disc into the conical winds. The conical winds may be responsible for episodic as well as long-lasting outflows in different types of stars. There is also a low-density, higher velocity component (a jet) in the region inside the conical wind. (2) In the case of rapidly rotating stars (the 'propeller regime'), a two-component outflow is observed. One component is similar to the conical winds. A significant fraction of the disc matter may be ejected into the winds. The second component is a high-velocity, low-density magnetically dominated axial jet where matter flows along the opened polar field lines of the star. The jet has a mass flux of about 10 per cent of that of the conical wind, but its energy flux (dominantly magnetic) can be larger than the energy flux of the conical wind. The jet's angular momentum flux (also dominantly magnetic) causes the star to spin down rapidly. Propeller-driven outflows may be responsible for the jets in protostars and for their rapid spin-down. The jet is collimated by the magnetic force while the conical winds are only weakly collimated in the simulation region. Exploratory 3D simulations show that conical winds are axisymmetric about the rotational axis (of the star and the disc), even when the dipole field of the star is significantly misaligned.  相似文献   
513.
P. Démoulin 《Solar physics》2009,257(1):169-184
In-situ observations of the solar wind (SW) show temperature increasing with the wind speed, whereas such a dependence is not observed in interplanetary coronal mass ejections (ICMEs). The aim of this paper is to understand the main origin of this correlation in the SW and its absence in ICMEs. For that purpose both the internal-energy and momentum equations are solved analytically with various approximations. The internal-energy equation does not provide a strong link between temperature and velocity, but the momentum equation does. Indeed, the observed correlation in the open magnetic-field configuration of the SW is the result of its acceleration and heating close to the Sun. In contrast, the magnetic configuration of ICMEs is closed, and moreover the momentum equation is dominated by magnetic forces. This implies no significant correlation between temperature and velocity, as observed.  相似文献   
514.
Helioseismic techniques such as ring-diagram analysis have often been used to determine the subsurface structural differences between solar active and quiet regions. Results obtained by inverting the frequency differences between the regions are usually interpreted as the sound-speed differences between them. These in turn are used as a measure of temperature and magnetic-field strength differences between the two regions. In this paper we first show that the “sound-speed” difference obtained from inversions is actually a combination of sound-speed difference and a magnetic component. Hence, the inversion result is not directly related to the thermal structure. Next, using solar models that include magnetic fields, we develop a formulation to use the inversion results to infer the differences in the magnetic and thermal structures between active and quiet regions. We then apply our technique to existing structure inversion results for different pairs of active and quiet regions. We find that the effect of magnetic fields is strongest in a shallow region above 0.985R and that the strengths of magnetic-field effects at the surface and in the deeper (r<0.98R ) layers are inversely related (i.e., the stronger the surface magnetic field the smaller the magnetic effects in the deeper layers, and vice versa). We also find that the magnetic effects in the deeper layers are the strongest in the quiet regions, consistent with the fact that these are basically regions with weakest magnetic fields at the surface. Because the quiet regions were selected to precede or follow their companion active regions, the results could have implications about the evolution of magnetic fields under active regions.  相似文献   
515.
Emission spectra from magnetars in the soft X-ray band likely contain a thermal component emerging directly from the neutron star (NS) surface. However, the lack of observed absorption-like features in quiescent spectra makes it difficult to directly constrain physical properties of the atmosphere. We argue that future X-ray polarization measurements represent a promising technique for directly constraining the magnetar magnetic field strength and geometry. We construct models of the observed polarization signal from a finite surface hotspot, using the latest NS atmosphere models for magnetic fields   B = 4 × 1013–5 × 1014 G  . Our calculations are strongly dependent on the NS magnetic field strength and geometry, and are more weakly dependent on the NS equation of state and atmosphere composition. We discuss how the complementary dependencies of phase-resolved spectroscopy and polarimetry might resolve degeneracies that currently hamper the determination of magnetar physical parameters using thermal models.  相似文献   
516.
We present a novel statistical analysis aimed at deriving the intrinsic shapes and magnetic field orientations of molecular clouds using dust emission and polarization observations by the Hertz polarimeter. Our observables are the aspect ratio of the projected plane-of-the-sky cloud image and the angle between the mean direction of the plane-of-the-sky component of the magnetic field and the short axis of the cloud image. To overcome projection effects due to the unknown orientation of the line-of-sight, we combine observations from 24 clouds, assuming that line-of-sight orientations are random and all are equally probable. Through a weighted least-squares analysis, we find that the best-fitting intrinsic cloud shape describing our sample is an oblate disc with only small degrees of triaxiality. The best-fitting intrinsic magnetic field orientation is close to the direction of the shortest cloud axis, with small  (∼24°)  deviations towards the long/middle cloud axes. However, due to the small number of observed clouds, the power of our analysis to reject alternative configurations is limited.  相似文献   
517.
The latitudinal drift of the imbalance flow of magnetic fields as a whole and the latitudinal drift of the imbalance flow components with certain significant rotation periods are determined. Comparison of these two drift types is performed for different ranges of magnetic field strength using the data of a 26-year observation period. The mathematical model of representation of the imbalance as a steady-state random process is used. As a result of analysis the following facts are established: (i) structures rotating with the same significant period are observed in a wide latitude range, (ii) there exist several significant periods in the power spectrum for one latitude, (iii) the character of the latitudinal drift of the imbalance flow of magnetic fields as a whole and the imbalance structures rotating with significant periods is the same for fields with close strengths, and (iv) for fields with each of the considered strengths there exists a latitude band in which a drift along the meridian is absent.  相似文献   
518.
Differences of magnetic field flows of “+” and “?” polarities, i.e. the imbalance of magnetic fields for 26 years—from January 1, 1977, to September 30, 2003—are investigated,. The synoptic maps of the longitudinal vector of Sun’s magnetic field strength obtained at the Kitt Peak National Observatory (United States) and kindly given to us by Dr. J. Harvey have served as the initial material. The imbalance of magnetic fields’ cyclicity features and the deviations from the dipole structure of Sun’s magnetic field are determined. The contribution of latitude zones and fields of various strength into the general magnetic flux from the Sun is found. The latter characteristic was compared with the Sun’s mean magnetic field (MMF) obtained from the observations of the Sun as a star (Kotov et al., 2002; Kotov, 2008). The obtained results testify that the imbalance is one of physical characteristics of the Sun. The confirmations of this conclusion are the strict regularities of the Sun’s dipole structure changing; the complicated character of the imbalance cyclicity, i.e., the multiplicity of cycles; the solar nature of MMF changing; and the distinction between two classes of magnetic fields in the imbalance characteristics.  相似文献   
519.
The standard dynamo models that explain the origin of the large-scale magnetic fields of celestial bodies are related to the view of turbulent or convective flows as a locally statistically homogeneous and isotropic, but not mirror-symmetric, random field. Using an ABC flow, which is a classical example of a flow with deterministic chaos, we ascertain the extent to which the behavior of the magnetic field in such a flow is similar to the behavior of the magnetic field in mirror-asymmetric turbulence. Such a similarity has been found to be achieved if its coefficients A, B, and C are assumed to be random processes.  相似文献   
520.
Huseyin Cavus   《New Astronomy》2009,14(8):700-707
In this work, some numerical solutions of magnetohydrodynamic equations are investigated in the presence of radial and azimuthal components of magnetic field with the use of previously developed algorithm. In this algorithm, the thin shell approximation and a special separation of variables is used to obtain the radial and latitudinal variations of physical parameters in spherical coordinates. The solutions are obtained via this separation of variables in the components of momentum transfer equation. The analysis yields three important parameters which are the sphericity, density and radial components shape parameters in the latitudinal distributions of physical variables. The magnetic field profile, used here, produces comparable magnetic fluxes found in previous works. There is a considerable change in density with respect to reference model. Other physical parameters also reveal important physical results. It is as well shown that the spherical symmetric distributions of physical parameters are broken for the region of study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号