首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1948篇
  免费   159篇
  国内免费   99篇
测绘学   51篇
大气科学   145篇
地球物理   328篇
地质学   277篇
海洋学   54篇
天文学   1253篇
综合类   29篇
自然地理   69篇
  2024年   4篇
  2023年   7篇
  2022年   15篇
  2021年   14篇
  2020年   23篇
  2019年   28篇
  2018年   21篇
  2017年   24篇
  2016年   21篇
  2015年   41篇
  2014年   44篇
  2013年   72篇
  2012年   58篇
  2011年   65篇
  2010年   73篇
  2009年   162篇
  2008年   164篇
  2007年   205篇
  2006年   159篇
  2005年   111篇
  2004年   110篇
  2003年   108篇
  2002年   106篇
  2001年   88篇
  2000年   99篇
  1999年   92篇
  1998年   96篇
  1997年   27篇
  1996年   29篇
  1995年   29篇
  1994年   11篇
  1993年   16篇
  1992年   8篇
  1991年   8篇
  1990年   18篇
  1989年   12篇
  1988年   10篇
  1987年   7篇
  1986年   9篇
  1984年   5篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有2206条查询结果,搜索用时 234 毫秒
271.
The Sunyaev–Zel'dovich (SZ) effect and the Faraday rotation from haloes are examined over a wide mass range, including gas condensation and magnetic field evolution. Contributions to the cosmic microwave background (CMB) angular power spectrum are evaluated for galaxy clusters, galaxy groups and galaxies. Smaller mass haloes are found to play a more important role than massive haloes for the B -mode polarization associated with the SZ CMB anisotropies. The B modes from the Faraday rotation dominate the secondary B modes caused by gravitational lensing at  ℓ > 3000  . Measurement of B -mode polarization in combination with the SZ power spectrum can potentially provide important constraints on intracluster magnetic field and gas evolution at early epochs.  相似文献   
272.
We suggest an explanation for the twin kilohertz quasi-periodic oscillations (kHz QPOs) in low-mass X-ray binaries (LMXBs) based on magnetohydrodynamics (MHD) oscillation modes in neutron star magnetospheres. Including the effect of the neutron star spin, we derive several MHD wave modes by solving the dispersion equations, and propose that the coupling of the two resonant MHD modes may lead to the twin kHz QPOs. This model naturally relates the upper, lower kHz QPO frequencies with the spin frequencies of the neutron stars, and can well account for the measured data of six LMXBs.  相似文献   
273.
This paper presents a catalogue and the method of determining averaged quadratic effective magnetic fields  〈 B e〉  for 1212 main-sequence and giant stars, and 11 white dwarf stars. The catalogue includes stars that are members of several open clusters. We have compiled measurements of the longitudinal magnetic field for those stars, which were scattered in the existing literature. A new parameter, magnetization (MA), has been defined, and we present values of MA for stars of various spectral classes. Our sample includes a subset of 610 chemically peculiar early-type stars. We confirm the conclusion of our previous study that the number distribution of all chemically peculiar stars versus the averaged magnetic field strength is described by a decreasing exponential function. Relations of this type also hold for stars of all the analysed subclasses of chemical peculiarity. Magnetization tends to correlate with the effective temperature only at high MA, for He-weak and He-rich stars.  相似文献   
274.
We consider the influence of magnetic fields on the model of neutrino-dominated accretion flows (NDAFs) for gamma-ray bursts (GRBs) via the assumption that the accretion rate of the disc is totally caused by the torque of the Lorentz force, i.e. the magnetic braking of large-scale magnetic fields and magnetic viscosity of small-scale magnetic fields. We calculate the structure, composition, luminosity of neutrino emission and the Poynting flux, and the rate of mass loss driven by neutrino heating or launched centrifugally by large-scale magnetic fields, based on the physical condition of the magnetized NDAFs. It is shown that the magnetized disc is favourable to interpret the diverse prompt emissions as well as the X-ray flares observed in the early afterglow of GRBs.  相似文献   
275.
We present a state-of-the-art scenario for newly born magnetars as strong sources of gravitational waves (GWs) in the early days after formation. We address several aspects of the astrophysics of rapidly rotating, ultra-magnetized neutron stars (NSs), including early cooling before transition to superfluidity, the effects of the magnetic field on the equilibrium shape of NSs, the internal dynamical state of a fully degenerate, oblique rotator and the strength of the electromagnetic torque on the newly born NS. We show that our scenario is consistent with recent studies of supernova remnant surrounding Anomalous X-ray Pulsars (AXPs) and Soft Gamma-Ray Repeaters (SGRs) in the Galaxy that constrains the electromagnetic energy input from the central NS to be  ≤ 1051  erg. We further show that if this condition is met, then the GW signal from such sources is potentially detectable with the forthcoming generation of GW detectors up to Virgo cluster distances where an event rate ∼1 yr−1 can be estimated. Finally, we point out that the decay of an internal magnetic field in the 1016 G range couples strongly with the NS cooling at very early stages, thus significantly slowing down both processes: the field can remain this strong for at least 103 yr, during which the core temperature stays higher than several times 108 K.  相似文献   
276.
We discuss one of the possible origins of large-scale magnetic fields based on a continuous distribution of toroidal electric current flowing in the inner region of the disc around a Kerr black hole (BH) in the framework of general relativity. It turns out that four types of configuration of the magnetic connection (MC) are generated, i.e. MC of the BH with the remote astrophysical load (MCHL), MC of the BH with the disc (MCHD), MC of the plunging region with the disc (MCPD) and MC of the inner and outer disc regions (MCDD). It turns out that the Blandford–Znajek process can be regarded as one type of MC, i.e. MCHL. In addition, we propose a scenario for fitting the quasi-periodic oscillations in BH binaries based on MCDD associated with the magnetic reconnection.  相似文献   
277.
Various radio observations have shown that the hot atmospheres of galaxy clusters are magnetized. However, our understanding of the origin of these magnetic fields, their implications on structure formation and their interplay with the dynamics of the cluster atmosphere, especially in the centres of galaxy clusters, is still very limited. In preparation for the upcoming new generation of radio telescopes (like Expanded Very Large Array, Low Wavelength Array, Low Frequency Array and Square Kilometer Array), a huge effort is being made to learn more about cosmological magnetic fields from the observational perspective. Here we present the implementation of magnetohydrodynamics (MHD) in the cosmological smoothed particle hydrodynamics (SPH) code gadget . We discuss the details of the implementation and various schemes to suppress numerical instabilities as well as regularization schemes, in the context of cosmological simulations. The performance of the SPH–MHD code is demonstrated in various one- and two-dimensional test problems, which we performed with a fully, three-dimensional set-up to test the code under realistic circumstances. Comparing solutions obtained using athena , we find excellent agreement with our SPH–MHD implementation. Finally, we apply our SPH–MHD implementation to galaxy cluster formation within a large, cosmological box. Performing a resolution study we demonstrate the robustness of the predicted shape of the magnetic field profiles in galaxy clusters, which is in good agreement with previous studies.  相似文献   
278.
We demonstrate that a simple solar dynamo model, in the form of a Parker migratory dynamo with random fluctuations of the dynamo governing parameters and algebraic saturation of dynamo action, can at least qualitatively reproduce all the basic features of solar Grand Minima as they are known from direct and indirect data. In particular, the model successfully reproduces such features as an abrupt transition into a Grand Minimum and the subsequent gradual recovery of solar activity, as well as mixed-parity butterfly diagrams during the epoch of the Grand Minimum. The model predicts that the cycle survives in some form during a Grand Minimum, as well as the relative stability of the cycle inside and outside of a Grand Minimum. The long-term statistics of simulated Grand Minima appears compatible with the phenomenology of the Grand Minima inferred from the cosmogenic isotope data. We demonstrate that such ability to reproduce the Grand Minima phenomenology is not a general feature of the dynamo models but requires some specific assumption, such as random fluctuations in dynamo governing parameters. In general, we conclude that a relatively simple and straightforward model is able to reproduce the Grand Minima phenomenology remarkably well, in principle providing us with a possibility of studying the physical nature of Grand Minima.  相似文献   
279.
W. Xie  H. Zhang  H. Wang 《Solar physics》2009,254(2):271-283
In this paper, we present a study of the correlation between the speed of flare ribbon separation and the magnetic flux density during the 10 April 2001 solar flare. The study includes the section of the neutral line containing the flare core and its peripheral area. This event shows clear two-ribbon structure and inhomogeneous magnetic fields along the ribbons, so the spatial correlation and distribution of the flare and magnetic parameters can be studied. A weak negative correlation is found between the ribbon separation speed (V r) and the longitudinal magnetic flux density (B z ). This correlation is the weakest around the peak of the flare. Spatially, the correlation is also weakest at the positions of the hard X-ray (HXR) sources. In addition, we estimate the magnetic reconnection rate (electric field strength in the reconnection region E rec) by combining the speed of flare ribbons and the longitudinal magnetic flux density. During flare evolution, the time profiles of the magnetic reconnection rate are similar to that of the ribbon separation speed, and the speeds of ribbon separation are relatively slow in the strong magnetic fields (i.e., V r is negatively correlated with B z ). However, along the flare ribbons, E rec fluctuates in a small range except near the HXR source. A localized enhancement of the reconnection rate corresponds to the position of the HXR source.  相似文献   
280.
This study based on longitudinal Zeeman effect magnetograms and spectral line scans investigates the dependence of solar surface magnetic fields on the spectral line used and the way the line is sampled to estimate the magnetic flux emerging above the solar atmosphere and penetrating to the corona from magnetograms of the Mt. Wilson 150-foot tower synoptic program (MWO). We have compared the synoptic program λ5250 Å line of Fe?i to the line of Fe?i at λ5233 Å since this latter line has a broad shape with a profile that is nearly linear over a large portion of its wings. The present study uses five pairs of sampling points on the λ5233 Å line. Line profile observations show that the determination of the field strength from the Stokes V parameter or from line bisectors in the circularly polarized line profiles lead to similar dependencies on the spectral sampling of the lines, with the bisector method being the less sensitive. We recommend adoption of the field determined with the line bisector method as the best estimate of the emergent photospheric flux and further recommend the use of a sampling point as close to the line core as is practical. The combination of the line profile measurements and the cross-correlation of fields measured simultaneously with λ5250 Å and λ5233 Å yields a formula for the scale factor δ ?1 that multiplies the MWO synoptic magnetic fields. By using ρ as the center-to-limb angle (CLA), a fit to this scale factor is δ ?1=4.15?2.82sin?2(ρ). Previously δ ?1=4.5?2.5sin?2(ρ) had been used. The new calibration shows that magnetic fields measured by the MDI system on the SOHO spacecraft are equal to 0.619±0.018 times the true value at a center-to-limb position 30°. Berger and Lites (2003, Solar Phys. 213, 213) found this factor to be 0.64±0.013 based on a comparison using the Advanced Stokes Polarimeter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号