首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   413篇
  免费   14篇
  国内免费   3篇
大气科学   1篇
地球物理   55篇
地质学   2篇
海洋学   1篇
天文学   365篇
综合类   1篇
自然地理   5篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2013年   6篇
  2012年   1篇
  2011年   46篇
  2010年   56篇
  2009年   43篇
  2008年   44篇
  2007年   49篇
  2006年   37篇
  2005年   46篇
  2004年   25篇
  2003年   13篇
  2002年   10篇
  2001年   8篇
  2000年   7篇
  1999年   10篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1992年   3篇
  1989年   3篇
  1988年   2篇
  1980年   1篇
排序方式: 共有430条查询结果,搜索用时 15 毫秒
91.
Previous analyses into flexural deformation on the icy satellites of Jupiter and Saturn have assumed static, elastic lithospheres. Viscous creep within the lithosphere, however, can cause evolution over time. Here, we apply a finite-element model that employs a time-dependent elastic–viscous-plastic rheology in order to investigate flexure on icy satellites. Factors that affect this time-dependent response are those that control creep rates; surface temperature, heat flow, and grain size. Our results show that surface temperature is by far the dominant factor. At higher surface temperatures (100–130 K), the evolution of the deformation is such that the thickness of a modeled elastic lithosphere could vary by up to an order of magnitude, depending on the time scale over which the deformation occurred. Because the flexure observed on icy satellites generally indicates transient high heat flow events, our results indicate that the duration of the heat pulse is an important factor. For the icy worlds of Jupiter and Saturn, static models of lithospheric flexure should be used with caution.  相似文献   
92.
Janus and Epimetheus are famously known for their distinctive horseshoe-shaped orbits resulting from a 1:1 orbital resonance. Every 4 years these two satellites swap their orbits by a few tens of kilometers as a result of their close encounter. Recently Tiscareno et al. (Tiscareno, M.S., Thomas, P.C., Burns, J.A. [2009]. Icarus 204, 254-261) have proposed a model of rotation based on images from the Cassini orbiter. These authors inferred the amplitude of rotational librational motion in longitude at the orbital period by fitting a shape model to Cassini ISS images. By a quasi-periodic approximation of the orbital motion, we describe how the orbital swap impacts the rotation of the satellites. To that purpose, we have developed a formalism based on quasi-periodic series with long- and short-period librations. In this framework, the amplitude of the libration at the orbital period is found proportional to a term accounting for the orbital swap. We checked the analytical quasi-periodic development by performing a numerical simulation and find both results in good agreement. To complete this study, the results obtained for the short-period librations are studied with the help of an adiabatic-like approach.  相似文献   
93.
Five years of Cassini Imaging Science Subsystem images, from 2004 to 2009, are analyzed in this work to retrieve global zonal wind profiles of Saturn’s northern and southern hemispheres in the methane absorbing bands at 890 and 727 nm and in their respective adjacent continuum wavelengths of 939 and 752 nm. A complete view of Saturn’s global circulation, including the equator, at two pressure levels, in the tropopause (60 mbar to 250 mbar with the MT filters) and in the upper troposphere (from ∼350 mbar to ∼500 mbar with the CB filter set), is presented. Both zonal wind profiles (available at the Supplementary Material Section), show the same structure but with significant differences in the peak of the eastward jets and the equatorial region, including a region of positive vertical shear symmetrically located around the equator between the 10° < |φc| < 25° where zonal velocities close to the tropopause are higher than at 500 mbar. A comparison of previously published zonal wind sets obtained by Voyager 1 and 2 (1980-1981), Hubble Space Telescope, and ground-based telescopes (1990-2004) with the present Cassini profiles (2004-2009) covering a full Saturn year shows that the shape of the zonal wind profile and intensity of the jets has remained almost unchanged except at the equator, despite the seasonal insolation cycle and the variability of Saturn’s emitted power. The major wind changes occurred at equatorial latitudes, perhaps following the Great White Spot eruption in 1990. It is not evident from our study if the seasonal insolation cycle and its associated ring shadowing influence the equatorial circulation at cloud level.  相似文献   
94.
The latitudinal variation of Saturn’s tropospheric composition (NH3, PH3 and AsH3) and aerosol properties (cloud altitudes and opacities) are derived from Cassini/VIMS 4.6-5.1 μm thermal emission spectroscopy on the planet’s nightside (April 22, 2006). The gaseous and aerosol distributions are used to trace atmospheric circulation and chemistry within and below Saturn’s cloud decks (in the 1- to 4-bar region). Extensive testing of VIMS spectral models is used to assess and minimise the effects of degeneracies between retrieved variables and sensitivity to the choice of aerosol properties. Best fits indicate cloud opacity in two regimes: (a) a compact cloud deck centred in the 2.5-2.8 bar region, symmetric between the northern and southern hemispheres, with small-scale opacity variations responsible for numerous narrow light/dark axisymmetric lanes; and (b) a hemispherically asymmetric population of aerosols at pressures less than 1.4 bar (whose exact altitude and vertical structure is not constrained by nightside spectra) which is 1.5-2.0× more opaque in the summer hemisphere than in the north and shows an equatorial maximum between ±10° (planetocentric).Saturn’s NH3 spatial variability shows significant enhancement by vertical advection within ±5° of the equator and in axisymmetric bands at 23-25°S and 42-47°N. The latter is consistent with extratropical upwelling in a dark band on the poleward side of the prograde jet at 41°N (planetocentric). PH3 dominates the morphology of the VIMS spectrum, and high-altitude PH3 at p < 1.3 bar has an equatorial maximum and a mid-latitude asymmetry (elevated in the summer hemisphere), whereas deep PH3 is latitudinally-uniform with off-equatorial maxima near ±10°. The spatial distribution of AsH3 shows similar off-equatorial maxima at ±7° with a global abundance of 2-3 ppb. VIMS appears to be sensitive to both (i) an upper tropospheric circulation (sensed by NH3 and upper-tropospheric PH3 and hazes) and (ii) a lower tropospheric circulation (sensed by deep PH3, AsH3 and the lower cloud deck).  相似文献   
95.
E.M.A. Chen  F. Nimmo 《Icarus》2011,214(2):779-781
Recently, Tyler [Tyler, R.H., 2009. Geophys. Res. Lett. 36, L15205; Tyler, R., 2011. Icarus, 211, 770-779] proposed that the tide due to an obliquity of greater than 0.1° might drive resonant flow in a liquid ocean at Enceladus, and that dissipation of the ocean’s kinetic energy may be an alternate source for the observed global heat flux. While there is currently no measurement of Enceladus’ obliquity, dissipation is expected to drive the spin pole to a Cassini state. Under this assumption, we find that Enceladus should occupy Cassini state 1 and that the obliquity of Enceladus should be less than 0.0015° for values of the degree-2 gravity coefficient C2,2 between 1.0 × 10−3 and 2.5 × 10−3. Unless there is a significant free obliquity or the gravity coefficient C2,2 has been significantly overestimated, it is unlikely that obliquity-driven flow in a subsurface ocean is the source of the extreme heat on Enceladus.  相似文献   
96.
地球弓激波的旋转非对称性   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对太阳风-磁层-电离层系统的全球MHD模拟,研究地球弓激波相对日地连线的旋转非对称性.模拟限于太阳风速度沿日地连线、地球磁偶极矩和行星际磁场(IMF)与日地连线垂直的简单情况.模拟结果表明,即便对于IMF强度为零的情况,弓激波相对日地连线也不具备旋转对称性质:终端面(晨昏子午面)及其向阳侧的弓激波截线的东西宽度大于南北宽度(约9%~11%),终端面尾侧的弓激波截线东西宽度小于南北宽度(约8%).在存在IMF的情况下,弓激波的位形同时受到磁层顶的形状和快磁声波速度各向异性的影响.磁层顶向外扩张并沿IMF方向拉伸,且其扩张和拉伸程度随IMF由北转南而增强.在磁鞘中,垂直于磁场方向的快磁声波速度高于平行方向.因此,磁层顶拉伸方向与快磁声波速度最大方向垂直,它们对弓激波位置的效应恰好相反;弓激波的最终形状取决于何种效应占据主导地位.对于终端面尾侧,快磁声波速度的各向异性起主导作用,弓激波截线沿IMF垂直方向的宽度大于平行方向.对于终端面及其向阳侧,弓激波截线的形状与IMF取向有关:在准北向或晨昏向IMF情况下,弓激波截线沿IMF垂直方向的宽度仍大于平行方向;在准南向IMF情况下,弓激波截线沿IMF垂直方向的宽度小于平行方向的.鉴于弓激波形状同IMF取向之间的密切关系,我们提议以IMF为基准方向,提取弓激波截线的平行半宽度Rb∥和垂直半宽度Rb⊥作为尺度参数.这些尺度参数和通常引入的弓激波截线的东西半宽度yb和南北半宽度zb相比,更为合理地表征了弓激波的几何性质.模拟结果表明,在终端面上,yb/zb和Rb∥/Rb⊥在IMF各向同性取向下的统计平均值均低于1,与观测得到的结论一致.  相似文献   
97.
We analyzed 15 solar occultations observed by the Cassini UVIS instrument to constrain the density and temperature structure near the exobase of Saturn. We retrieved the density of H2 and thus the temperature at altitudes higher than 1900 km above the 1 bar level by analyzing the ionization continuum of H2 at wavelengths shorter than 804 Å. We find that the exospheric temperature ranges from 370 K to 540 K, with a typical uncertainty of less than 20 K. According to our data the temperature increases with latitude from the equator to the poles by 100–150 K. At similar latitudes, the temperature varies by 20–50 K at different times with no evidence for any systematic diurnal trend so far. Based on our data, the exobase of Saturn is 2700–3000 km above the 1 bar level and the thermal escape parameter near the exobase ranges from 260 to 340, implying that thermal escape from Saturn is firmly in the Jeans regime. The mixing ratio of H2 is close to unity at all altitudes below the exobase. We find that the pressure levels in the thermosphere deviate significantly from a simple spheroid predicted by potential theory. This is consistent with significant meridional temperature variations in the lower thermosphere. A global analysis of the temperature structure at different depths in the atmosphere is required to constrain both the shape and the deposition and redistribution of energy in the upper atmosphere further.  相似文献   
98.
The polar geomagnetic activity resulting from solar wind–magnetosphere interactions can be characterized the Polar Cap (PC) indices, PCN and PCS. PC index values are derived from polar magnetic variations calibrated on a statistical basis such that the index approximate values in units of mV/m of the interplanetary “geo-effective” (or “merging”) electric field (EM) conveyed by the solar wind. The timing and amplitude relations of the PC index to solar wind plasma and magnetic field parameters are reported. The solar wind effects are parameterized in terms of the geo-effective electric field (EM) and the dynamical pressure (PDYN). The PC index has a delayed and damped response to EM variations and display saturation-like effects for EM values exceeding 10 mV/m. Steady or slowly varying levels of solar wind dynamical pressure have little or no impact on the PC index above the effects related to EM for which the solar wind velocity is also a factor. Sharp increases in the dynamical pressure generate impulsive variations in the PC index comprising a initial negative impulse of 5–10 min duration followed by a positive impulse lasting 10–20 min. Typical amplitudes of both the negative and the positive impulses are 0.2–0.5 units. A sharp decrease in the pressure produces the inverse sequence of pulses in the PC index. Auroral substorm activity represented by the AL index level has a marked influence on the average PC/EM level at the transition from very quiet (AL0 nT) to disturbed conditions while more or less disturbed conditions (AL<100 nT) have no systematic effect on the average PC/EM values. At distinct substorm events the PC/EM ratio has a minimum (0.8) in the pre-onset phase at around 20 min before substorm onset. The average ratio gradually increases in the expansion phase to reach a maximum value (1.1) at around 40 min after substorm onset (or 20 min after the largest (negative) peak in AL). At substorm recovery during the next 2 h the PC/EM ratio decreases. Finally, we report on the application of polar magnetic variations to model the disturbance storm time (Dst) index development during magnetic storms by using the PC index as a source function to quantify the energy input to the ring current representing accumulated storm energy and characterized by the Dst index.  相似文献   
99.
We study numerically the motion of a single particle in the bending wave of finite thickness in Saturn’s ring. We include the forcing due to the planet, a moon, the coriolis force and the self gravity of the ring. In particular, we compute the variation of the velocity arising due to the variation of the amplitude and the phase of the epicyclic motion across the local vertical height of the ring. We suggest that the dissipation of energy due to the collision of ring particles in this shear layer damps out the bending wave of Saturn’s ring at the 5:3 vertical resonance of Mimas within a distance of 150 km from the site of its launching as is observed in Voyager data.  相似文献   
100.
B.J. Buratti  M.D. Hicks  A. Davies 《Icarus》2005,175(2):490-495
We have obtained broadband spectrophotometric observations of four of the recently discovered small satellites of Saturn (Gladman et al., 2001, Nature 412, 163-166). The new data enable an understanding of the provenance, composition, and interrelationships among these satellites and the other satellites of Saturn, particularly Iapetus, Phoebe, and Hyperion. Temporal coverage of one satellite (S21 Tarvos) was sufficient to determine a partial rotational lightcurve. Our major findings include: (1) the satellites are red and similar in color, comparable to D-type asteroids, some KBOs, Iapetus, and Hyperion; (2) none of the satellites, including those from the “Phoebe Group” has any spectrophotometric relationship to Phoebe; and (3) S21 Tarvos exhibits a rotational lightcurve, although the data are not well-constrained and more observations are required to fit a definitive period. Dust created by meteoritic impacts and ejected from these satellites and additional undiscovered ones may be the source of the exogenous material deposited on the low-albedo side of Iapetus. Recent work which states that the small irregular satellites of Saturn have impacted Phoebe at least 6-7 times in the age of the Solar System (Nesvorny et al., 2003, Astron. J. 126, 398-429), suggests that such collisions may have propelled additional material from both Phoebe and the small irregular satellites toward Iapetus. The accretion of material from outer retrograde satellites may be a process that also occurs on Callisto and the uranian satellites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号