首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   0篇
测绘学   2篇
海洋学   1篇
天文学   90篇
  2019年   1篇
  2011年   7篇
  2010年   10篇
  2009年   13篇
  2008年   7篇
  2007年   17篇
  2006年   15篇
  2005年   5篇
  2004年   6篇
  2003年   7篇
  1995年   2篇
  1993年   3篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
51.
One of the great discoveries of NASA's Galileo mission was the presence of an intrinsically produced magnetic field at Ganymede. Generation of the relatively strong (750 nT) field likely requires dynamo action in Ganymede's metallic core, but how such a dynamo has been maintained into the present epoch remains uncertain. Using a one-dimensional, three layer thermal model of Ganymede, we find that magnetic field generation can only occur if the sulfur mass fraction in Ganymede's core is very low (?3%) or very high (?21%), and the silicate mantle can cool rapidly (i.e. it has a viscosity like wet olivine). However, these requirements are not necessarily compatible with cosmochemical and physical models of the satellite. We therefore investigate an alternative scenario for producing Ganymede's magnetic field in which passage through an eccentricity pumping Laplace-like resonance in Ganymede's past enables present day dynamo action in the metallic core. If sufficient tidal dissipation occurs in Ganymede's silicate mantle during resonance passage, silicate temperatures can undergo a runaway which prevents the core from cooling until the resonance passage ends. The rapid silicate and core cooling that follows resonance escape triggers dynamo action via thermal and/or compositional convection. To test the feasibility of this mechanism we couple our thermal model with an orbital evolution model to examine the effects of resonance passage on Ganymede's silicate mantle and metallic core. We find that, contrary to expectations, there are no physically plausible scenarios in which tidal heating in the silicates is sufficient to cause the thermal runaway necessary to prevent core cooling. These findings are robust to variations in the silicate rheology, tidal dissipation factor of Jupiter (QJ), structure of the ice shell, and the inclusion of partial melting in the silicate mantle. Resonance passage therefore appears unlikely to explain Ganymede's magnetic field and we must appeal to the special conditions described above to explain the presence of the field.  相似文献   
52.
Rodney S. Gomes 《Icarus》2011,215(2):661-668
Numerical integrations of the equations of motion of the giant planets and scattering particles show that there is a possible orbital itinerary that a particle may follow from a scattering mode up to a stable position near the orbit of 2004 XR190. This orbital evolution requires that the particle gets trapped in a mean motion resonance with Neptune coupled with the Kozai resonance. Imposing migration on Neptune while a particle is experiencing both resonances can entail an escape from resonance at a low particle’s eccentricity. This eccentricity and the associated inclination are always similar to those of 2004 XR190. I conclude that 2004 XR190 was most likely a scattered object that went through those resonance processes and was eventually deposited at its current position. By the same argument, it is expected that there must exist several other objects with similar semimajor axis, eccentricity and inclination as those of 2004 XR190.  相似文献   
53.
We use numerical integrations to investigate the dynamical evolution of resonant Trojan and quasi-satellite companions during the late stages of migration of the giant planets Jupiter, Saturn, Uranus, and Neptune. Our migration simulations begin with Jupiter and Saturn on orbits already well separated from their mutual 2:1 mean-motion resonance. Neptune and Uranus are decoupled from each other and have orbital eccentricities damped to near their current values. From this point we adopt a planet migration model in which the migration speed decreases exponentially with a characteristic timescale τ (the e-folding time). We perform a series of numerical simulations, each involving the migrating giant planets plus test particle Trojans and quasi-satellites. We find that the libration frequencies of Trojans are similar to those of quasi-satellites. This similarity enables a dynamical exchange of objects back and forth between the Trojan and quasi-satellite resonances during planetary migration. This exchange is facilitated by secondary resonances that arise whenever there is more than one migrating planet. For example, secondary resonances may occur when the circulation frequencies, f, of critical arguments for the Uranus-Neptune 2:1 mean-motion near-resonance are commensurate with harmonics of the libration frequency of the critical argument for the Trojan and quasi-satellite 1:1 mean-motion resonance . Furthermore, under the influence of these secondary resonances quasi-satellites can have their libration amplitudes enlarged until they undergo a close-encounter with their host planet and escape from the resonance. High-resolution simulations of this escape process reveal that ≈80% of jovian quasi-satellites experience one or more close-encounters within Jupiter’s Hill radius (RH) as they are forced out of the quasi-satellite resonance. As many as ≈20% come within RH/4 and ≈2.5% come within RH/10. Close-encounters of escaping quasi-satellites occur near or even below the 2-body escape velocity from the host planet. Finally, the exchange and escape of Trojans and quasi-satellites continues to as late as 6-9τ in some simulations. By this time the dynamical evolution of the planets is strongly dominated by distant gravitational perturbations between the planets rather than the migration force. This suggests that exchange and escape of Trojans and quasi-satellites may be a contemporary process associated with the present-day near-resonant configuration of some of the giant planets in our Solar System.  相似文献   
54.
An analytical model that describes the evolution of ring particles that are co-orbital with two larger bodies on near-circular and near-planar orbits has been formulated. This can be used to estimate the lifetime of the particles within the ring. All the examples investigated, such as the Janus-Epimetheus (JE) system, indicate that the particles should be removed from the co-orbital region within half a synodic period (∼4 years for JE). Numerical modelling confirms the predictions of the model. When the masses are on eccentric orbits the particles remain within the co-orbital system for longer. Our results suggest that the ring associated with Janus and Epimetheus must be continually fed with material, probably by meteoroid impacts on the two satellites.  相似文献   
55.
The present obliquity of Mercury is very low (less than 0.1°), which led previous studies to always adopt a nearly zero obliquity during the planet’s past evolution. However, the initial orientation of Mercury’s rotation axis is unknown and probably much different than today. As a consequence, we believe that the obliquity could have been significant when the rotation rate of the planet first encountered spin-orbit resonances. In order to compute the capture probabilities in resonance for any evolutionary scenario, we present in full detail the dynamical equations governing the long-term evolution of the spin, including the obliquity contribution.The secular spin evolution of Mercury results from tidal interactions with the Sun, but also from viscous friction at the core-mantle boundary. Here, this effect is also regarded with particular attention. Previous studies show that a liquid core enhances drastically the chances of capture in spin-orbit resonances. We confirm these results for null obliquity, but we find that the capture probability generally decreases as the obliquity increases. We finally show that, when core-mantle friction is combined with obliquity evolution, the spin can evolve into some unexpected configurations as the synchronous or the 1/2 spin-orbit resonance.  相似文献   
56.
On the basis of tidal despinning timescale arguments, Peale showed in 1977 that the majority of irregular satellites (with unknown rotation states) are expected to reside close to their initial (fast) rotation states. Here we investigate the problem of the current typical rotation states among all known satellites from a viewpoint of dynamical stability. We explore location of the known planetary satellites on the (ω0e) stability diagram, where ω0 is an inertial parameter of a satellite and e is its orbital eccentricity. We show that most of the satellites with unknown rotation states cannot rotate synchronously, because no stable synchronous 1:1 spin-orbit state exists for them. They rotate either much faster than synchronously (those tidally unevolved) or, what is much less probable, chaotically (tidally-evolved objects or captured slow rotators).  相似文献   
57.
M. Seiß  F. Spahn  Jürgen Schmidt 《Icarus》2010,210(1):298-317
Saturn’s rings host two known moons, Pan and Daphnis, which are massive enough to clear circumferential gaps in the ring around their orbits. Both moons create wake patterns at the gap edges by gravitational deflection of the ring material (Cuzzi, J.N., Scargle, J.D. [1985]. Astrophys. J. 292, 276-290; Showalter, M.R., Cuzzi, J.N., Marouf, E.A., Esposito, L.W. [1986]. Icarus 66, 297-323). New Cassini observations revealed that these wavy edges deviate from the sinusoidal waveform, which one would expect from a theory that assumes a circular orbit of the perturbing moon and neglects particle interactions. Resonant perturbations of the edges by moons outside the ring system, as well as an eccentric orbit of the embedded moon, may partly explain this behavior (Porco, C.C., and 34 colleagues [2005]. Science 307, 1226-1236; Tiscareno, M.S., Burns, J.A., Hedman, M.M., Spitale, J.N., Porco, C.C., Murray, C.D., and the Cassini Imaging team [2005]. Bull. Am. Astron. Soc. 37, 767; Weiss, J.W., Porco, C.C., Tiscareno, M.S., Burns, J.A., Dones, L. [2005]. Bull. Am. Astron. Soc. 37, 767; Weiss, J.W., Porco, C.C., Tiscareno, M.S. [2009]. Astron. J. 138, 272-286). Here we present an extended non-collisional streamline model which accounts for both effects. We describe the resulting variations of the density structure and the modification of the nonlinearity parameter q. Furthermore, an estimate is given for the applicability of the model. We use the streamwire model introduced by Stewart (Stewart, G.R. [1991]. Icarus 94, 436-450) to plot the perturbed ring density at the gap edges.We apply our model to the Keeler gap edges undulated by Daphnis and to a faint ringlet in the Encke gap close to the orbit of Pan. The modulations of the latter ringlet, induced by the perturbations of Pan (Burns, J.A., Hedman, M.M., Tiscareno, M.S., Nicholson, P.D., Streetman, B.J., Colwell, J.E., Showalter, M.R., Murray, C.D., Cuzzi, J.N., Porco, C.C., and the Cassini ISS team [2005]. Bull. Am. Astron. Soc. 37, 766), can be well described by our analytical model. Our analysis yields a Hill radius of Pan of 17.5 km, which is 9% smaller than the value presented by Porco (Porco, C.C., and 34 colleagues [2005]. Science 307, 1226-1236), but fits well to the radial semi-axis of Pan of 17.4 km. This supports the idea that Pan has filled its Hill sphere with accreted material (Porco, C.C., Thomas, P.C., Weiss, J.W., Richardson, D.C. [2007]. Science 318, 1602-1607). A numerical solution of a streamline is used to estimate the parameters of the Daphnis-Keeler gap system, since the close proximity of the gap edge to the moon induces strong perturbations, not allowing an application of the analytic streamline model. We obtain a Hill radius of 5.1 km for Daphnis, an inner edge variation of 8 km, and an eccentricity for Daphnis of 1.5 × 10−5. The latter two quantities deviate by a factor of two from values gained by direct observations (Jacobson, R.A., Spitale, J., Porco, C.C., Beurle, K., Cooper, N.J., Evans, M.W., Murray, C.D. [2008]. Astron. J. 135, 261-263; Tiscareno, M.S., Burns, J.A., Hedman, M.M., Spitale, J.N., Porco, C.C., Murray, C.D., and the Cassini Imaging team [2005]. Bull. Am. Astron. Soc. 37, 767), which might be attributed to the neglect of particle interactions and vertical motion in our model.  相似文献   
58.
We study the dynamical evolution of the Hilda group of asteroids trough numerical methods, performing also a collisional pseudo-evolution of the present population, in order to calculate the rate of evaporation and its contribution to the cratering history of the Galilean satellites. If the present population of small asteroids in the Hilda's region follows the same size distribution observed at larger radii, we find that this family is the main contributor to the production of small craters (i.e., crater with diameters d∼4 km) on the Galilean system, overcoming the production by Jupiter Family Comets and by Trojan asteroids. The results of this investigation encourage further observational campaigns, in order to determine the size distribution function of small Hilda asteroids.  相似文献   
59.
60.
In preparation for the Rosetta mission, the location and widths of gravitational resonances surrounding a regularly shaped and possibly complex rotating body are mapped following the second fundamental model of resonance. It is found that for uniaxial rotation of the central body, the surrounding resonances are widest for prograde orbits. If the figure axis is tilted with respect to the spin axis of the central body, an additional number of wide resonances appear with a preference for prograde and inclined orbits, and the occurrence of initial conditions which lie in the globally connected chaotic web is significantly increased. For larger rotational excitations, it is seen how these new additional resonances overlap internally at low eccentricity for very large semi-major axes. However, with exceptions for some excited short-axis rotational modes of the central body, it is argued that most resonances vanish for retrograde orbits lying in the plane normal to the body spin, and that resonant or non-resonant stability therefore can be expected for a wide range of mean orbit eccentricities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号