首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   0篇
天文学   89篇
  2013年   1篇
  2011年   18篇
  2010年   12篇
  2009年   11篇
  2008年   12篇
  2007年   8篇
  2006年   5篇
  2005年   10篇
  2004年   8篇
  2003年   4篇
排序方式: 共有89条查询结果,搜索用时 0 毫秒
51.
The depth and duration of energy and momentum coupling in an impact shapes the formation of the crater. The earliest stages of crater growth (when the projectile transfers its energy and momentum to the target) are unrecoverable when the event is described by late stage parameters, which collapse the initial conditions of the impact into a singular point in time and space. During the coupling phase, the details of the impact are mapped into the ejecta flow field. In this experimental study, we present new experimental and computational measurements of the ejecta distribution and crater growth extending from early times into main-stage ballistic flow for hypervelocity impacts over a range of projectile densities. Specifically, we assess the effect of projectile density on coupling depth and location in porous particulate (sand) targets. A non-invasive high-speed imaging technique is employed to capture the velocity of individual ejecta particles very early in the cratering event as a function of both time and launch position. These data reveal that the effects of early-stage coupling, such as non-constant ejection angles, manifest not only in early-time behavior but also extend to main-stage crater growth. Time-resolved comparisons with hydrocode calculations provide both benchmarking and insight into the parameters controlling the ejection process. Measurements of the launch position and metrics for the transient diameter to depth ratio as a function of time demonstrate non-proportional crater growth throughout much of excavation. Low-density projectiles couple closer to the surface, thereby leading to lower ejection angles and larger effective diameter to depth ratios. These results have implications for the ballistic emplacement of ejecta on planetary surfaces, and are essential to interpreting temporally resolved data from impact missions.  相似文献   
52.
Recent observations suggest methane in the martian atmosphere is variable on short spatial and temporal scales. However, to explain the variability by loss reactions requires production rates much larger than expected. Here, we report results of laboratory studies of methane adsorption onto JSC-Mars-1, a martian soil simulant, and suggest that this process could explain the observations. Uptake coefficient (γ) values were measured as a function of temperature using a high-vacuum Knudsen cell able to simulate martian temperature and pressure conditions. Values of γ were measured from 115 to 135 K, and the data were extrapolated to higher temperatures with more relevance to Mars. Adsorptive uptake was found to increase at lower temperatures and larger methane partial pressures. Although only sub-monolayer methane surface coverage is likely to exist under martian conditions, a very large mineral surface area is available for adsorption as atmospheric methane can diffuse meters into the regolith. As a result, significant methane may be temporarily lost to the regolith on a seasonal time scale. As this weak adsorption is fully reversible, methane will be re-released into the atmosphere when surface and subsurface temperatures rise and so no net loss of methane occurs. Heterogeneous interaction of methane with martian soil grains is the only process proposed thus far which contains both rapid methane loss and rapid methane production mechanisms and is thus fully consistent with the reported variability of methane on Mars.  相似文献   
53.
We use ROLO photometry (Kieffer, H.H., Stone, T.C. [2005]. Astron. J. 129, 2887-2901) to characterize the before and after full Moon radiance variation for a typical highlands site and a typical mare site. Focusing on the phase angle range 45° < α < 50°, we test two different physical models, macroscopic roughness and multiple scattering between regolith particles, for their ability to quantitatively reproduce the measured radiance difference. Our method for estimating the rms slope angle is unique and model-independent in the sense that the measured radiance factor I/F at small incidence angles (high Sun) is used as an estimate of I/F for zero roughness regolith. The roughness is determined from the change in I/F at larger incidence angles. We determine the roughness for 23 wavelengths from 350 to 939 nm. There is no significant wavelength dependence. The average rms slope angle is 22.2° ± 1.3° for the mare site and 34.1° ± 2.6° for the highland site. These large slopes, which are similar to previous “photometric roughness” estimates, require that sub-mm scale “micro-topography” dominates roughness measurements based on photometry, consistent with the conclusions of Helfenstein and Shepard (Helfenstein, P., Shepard, M.K. [1999]. Icarus 141, 107-131). We then tested an alternative and very different model for the before and after full Moon I/F variation: multiple scattering within a flat layer of realistic regolith particles. This model consists of a log normal size distribution of spheres that match the measured distribution of particles in a typical mature lunar soil 72141,1 (McKay, D.S., Fruland, R.M., Heiken, G.H. [1974]. Proc. Lunar Sci. Conf. 5, Geochim. Cosmochim. Acta 1 (5), 887-906). The model particles have a complex index of refraction 1.65-0.003i, where 1.65 is typical of impact-generated lunar glasses. Of the four model parameters, three were fixed at values determined from Apollo lunar soils: the mean radius and width of the log normal size distribution and the real part of the refraction index. We used FORTRAN programs from Mishchenko et al. (Mishchenko, M.I., Dlugach, J.M., Yanovitskij, E.G., Zakharova, N.T. [1999]. J. Quant. Spectrosc. Radiat. Trans. 63, 409-432; Mishchenko, M.I., Travis, L.D., Lacis, A.A. [2002]. Scattering, Absorption and Emission of Light by Small Particles. Cambridge Univ. Press, New York. <http://www.giss.nasa.gov/staff/mmishchenko/books.html>) to calculate the scattering matrix and solve the radiative transfer equation for I/F. The mean single scattering albedo is ω = 0.808, the asymmetry parameter is 〈cos Θ〉 = 0.77 and the phase function is very strongly peaked in both the forward and backward scattering directions. The fit to the observations for the highland site is excellent and multiply scattered photons contribute ?80% of I/F. We conclude that either model, roughness or multiple scattering, can match the observations, but that the strongly anisotropic phase functions of realistic particles require rigorous calculation of many orders of scattering or spurious photometric roughness estimates are guaranteed. Our multiple scattering calculation is the first to combine: (1) a regolith model matched to the measured particle size distribution and index of refraction of the lunar soil, (2) a rigorous calculation of the particle phase function and solution of the radiative transfer equation, and (3) application to lunar photometry with absolute radiance calibration.  相似文献   
54.
Images of the lunar nearside obtained by telescopes of Maidanak Observatory (Uzbekistan) and Simeiz Observatory (Crimea, Ukraine) equipped with Canon CMOS cameras and Sony CCD LineScan camera were used to study photometric properties of the lunar nearside in several spectral bands. A wide range of lunar phase angles was covered, and the method of phase ratios to assess the steepness of the phase function at different phase angles is applied. We found several areas with photometric anomalies in the south-west portion of the lunar disk that we refer to as Oceanus Procellarum anomalies. The areas being unique on the lunar nearside do not obey the inverse correlation between albedo and phase-curve slope, demonstrating high phase-curve slopes at intermediate albedo. Low-Sun images acquired with Lunar Orbiter IV and Apollo-16 cameras do not reveal anomalous topography of the regions, at least for scales larger than several tens of meters. The areas also do not have any thermal inertia, radar (70 and 3.8 cm), magnetic, or chemical/mineral peculiarities. On the other hand they exhibit a polarimetric signature that we interpret to be due to the presence of a porous regolith upper layer consisting of dust particles. The anomalies may be interpreted as regions of very fresh shallow regolith disturbances caused by impacts of meteoroid swarms consisting of rather small impactors. This origin is similar to one of the hypotheses for the origin of lunar swirls like the Reiner-γ formation. The photometric difference between the shallow and pervasive (Reiner-γ class) swirls is that the latter appear to have a significant amount of immature soils in the upper surface layers.  相似文献   
55.
On the sub-kilometer S-type asteroid, 25143 Itokawa, some boulders on rough terrains seem to be exposed without any powdery material covering. Based on surface morphological features, there are two major types of boulders: one has rounded edges and corners (rounded boulders), while the other has angular edges and corners (angular boulders). The surface features of the rounded boulders suggest that they have hardness heterogeneity and that some may be breccias. The angular boulders appear to be more resistant to impact disruption than the rounded ones, which may be due to a difference in lithology. The major constituents of Itokawa may be LL chondrite-like brecciated lithology (rounded boulders) along with a remarkable number of boulders suggesting that lithology is atypical among LL chondrites (angular boulders). Some of both types of boulders contain intersecting and stepped planar foliations. Comparison with meteorite ALH76009 suggests that the planar foliations may be marks where rocks were torn apart. As lithified breccias cannot be formed on present-day sub-kilometer-sized Itokawa, it is reasonable that boulders with various lithologies on Itokawa were formed on its large ancestor(s). The rubble-pile structure of Itokawa suggested by its low density (∼1.9 g/cm3) indicates that boulders on Itokawa are reassembled fragments formed by catastrophic disruption of large ancestor(s).  相似文献   
56.
The effects of various types of topography on the shadow-hiding effect and multiple scattering in particulate surfaces are studied. Two bounding cases were examined: (1) the characteristic scale of the topography is much larger than the surface particle size, and (2) the characteristic scale of the topography is comparable to the surface particle size. A Monte Carlo ray-tracing method (i.e., geometric optics approximation) was used to simulate light scattering. The computer modeling shows that rocky topographies generated by randomly distributed stones over a flat surface reveal much steeper phase curves than surface with random topography generated from Gaussian statistics of heights and slopes. This is because rocks may have surface slopes greater than 90°. Consideration of rocky topography is important for interpreting rover observations. We show the roughness parameter in the Hapke model to be slightly underestimated for bright planetary surfaces, as the model neglects multiple scattering on large-scale topographies. The multiple scattering effect also explains the weak spectral dependences of the roughness parameter in Hapke's model found by some authors. Multiple scattering between different parts of a rough surface suppresses the effect of shadowing, thus the effects produced by increases in albedo on the photometric behavior of a surface can be compensated for with the proper decreases in surface roughness. This defines an effective (photometric) roughness for a surface. The interchangeability of albedo and roughness is shown to be possible with fairly high accuracy for large-scale random topography. For planetary surfaces that have a hierarchically arranged large-scale random topography, predictions made with the Hapke model can significantly differ from real values of roughness. Particulate media with surface borders complicated by Gaussian or clumpy random topographies with characteristic scale comparable to the particle size reveal different photometric behaviors in comparison with particulate surfaces that are flat or the scale of their topographies is much larger than the particle size.  相似文献   
57.
By studying color variations between young and old asteroid families we find evidence for processes that modify colors of asteroids over time. We show that colors of aging surfaces of S-type asteroids become increasingly ‘redder’ and measure the rate of these spectral changes. We estimate that the mean spectral slope between 0.35 and 0.9 μm increases with time t (given in My) as ≈0.01 μm−1×log10t. This empirical fit is valid only for 2.5?t?3000 My (the time interval where we have data) and for the mean spectral slope determined from wide-wavelength filter photometry obtained by the Sloan Digital Sky Survey. We also find that Gy-old terrains of S-type asteroids reflect about 15% more light at ∼1-μm wavelengths than an ∼5-My-old S-type asteroid surface when the flux is normalized by the reflected light at 0.55 μm. We attribute these effects to space weathering. This result has important implications for asteroid geology and the origin of meteorites that reach the Earth. Our results also suggest that surfaces of C-type asteroids exhibit color alterations opposite to those of the S-type asteroids.  相似文献   
58.
Current surface conditions (strong oxidative atmosphere, UV radiation, low temperatures and xeric conditions) on Mars are considered extremely challenging for life. The question is whether there are any features on Mars that could exert a protective effect against the sterilizing conditions detected on its surface. Potential habitability in the subsurface would increase if the overlaying material played a protective role. With the aim of evaluating this possibility we studied the viability of two microorganisms under different conditions in a Mars simulation chamber. An acidophilic chemolithotroph isolated from Río Tinto belonging to the Acidithiobacillus genus and Deinococcus radiodurans, a radiation resistant microorganism, were exposed to simulated Mars conditions under the protection of a layer of ferric oxides and hydroxides, a Mars regolith analogue. Samples of these microorganisms were exposed to UV radiation in Mars atmospheric conditions at different time intervals under the protection of 2 and 5 mm layers of oxidized iron minerals. Viability was evaluated by inoculation on fresh media and characterization of their growth cultures. Here we report the survival capability of both bacteria to simulated Mars environmental conditions.  相似文献   
59.
Impact-induced seismic vibrations have long been suspected of being an important surface modification process on small satellites and asteroids. In this study, we use a series of linked seismic and geomorphic models to investigate the process in detail. We begin by developing a basic theory for the propagation of seismic energy in a highly fractured asteroid, and we use this theory to model the global vibrations experienced on the surface of an asteroid following an impact. These synthetic seismograms are then applied to a model of regolith resting on a slope, and the resulting downslope motion is computed for a full range of impactor sizes. Next, this computed downslope regolith flow is used in a morphological model of impact crater degradation and erasure, showing how topographic erosion accumulates as a function of time and the number of impacts. Finally, these results are applied in a stochastic cratering model for the surface of an Eros-like body (same volume and surface area as the asteroid), with craters formed by impacts and then erased by the effects of superposing craters, ejecta coverage, and seismic shakedown. This simulation shows good agreement with the observed 433 Eros cratering record at a Main Belt exposure age of 400±200 Myr, including the observed paucity of small craters. The lowered equilibrium numbers (loss rate = production rate) for craters less than ∼100 m in diameter is a direct result of seismic erasure, which requires less than a meter of mobilized regolith to reproduce the NEAR observations. This study also points to an upper limit on asteroid size for experiencing global, surface-modifying, seismic effects from individual impacts of about 70-100 km (depending upon asteroid seismic properties). Larger asteroids will experience only localized (regional) seismic effects from individual impacts.  相似文献   
60.
Tetsuya Tokano 《Icarus》2003,164(1):50-78
In an effort to test and to understand the global hydrogen distribution in the shallow subsurface of Mars retrieved by the Mars Odyssey gamma-ray spectrometer, the present state and movement of water are investigated by a coupled global subsurface-atmosphere water cycle model. It was found that the observed global subsurface hydrogen distribution is largely consistent with the modeled global water cycle, so a large fraction of hydrogen is likely to exist as water, at low and mid latitudes in the form of adsorbed water. Under the present climate the water content in the shallow subsurface becomes higher in the northern hemisphere than in the southern hemisphere as a result of global water cycle, regardless of the initial water distribution in the soil or adsorptive capacity. The higher annual maximum soil temperature in the south, stronger net northward transport of atmospheric water vapor, and the emission of vapor from the northern residual polar cap in northern summer contribute to this hemispheric asymmetry. The generally higher adsorptive capacity of clay minerals in the northern plains may further increase this bias. The longitudinal inhomogeneity is caused by several factors, such as thermal inertia, adsorptive capacity, and atmospheric surface pressure. The water abundance is locally high in low thermal inertia regions (e.g., Arabia Terra) and at deep places where the surface pressure is high (e.g., Hellas); it is low in soil with a low adsorptive capacity (e.g., Tharsis) and high thermal inertia regions (e.g., Solis Planum). Most of the soil humidity near the surface at low and mid latitudes may originate from the atmosphere. The model implies that the upper soil layer should be largely ice-free because otherwise an excessive sublimation and vapor emission into the atmosphere in warm seasons would violate the observational constraints. Moreover, the more uniform latitudinal variation of the observed hydrogen abundance near the surface compared to that of deeper layers is indicative of the presence of adsorbed water instead of ground ice because the adsorbed water content does not as steeply depend on latitude as the ground ice stability. Concerning the regolith mineralogy, montmorillonite can much better account for the observed water cycle than palagonite. While the presence of permanent ground ice appears likely in the polar region below a thin layer, large seasonal cycle of phase change between pore ice and adsorbed water may be possible. Regolith adsorption/desorption is neither negligible nor crucial for the seasonal atmospheric water cycle, but the surface-atmosphere coupling is a major prerequisite for the long-term evolution of subsurface water distribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号