首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   564篇
  免费   25篇
  国内免费   60篇
测绘学   13篇
大气科学   71篇
地球物理   57篇
地质学   61篇
海洋学   38篇
天文学   375篇
综合类   8篇
自然地理   26篇
  2023年   2篇
  2022年   7篇
  2021年   10篇
  2020年   11篇
  2019年   19篇
  2018年   10篇
  2017年   11篇
  2016年   9篇
  2015年   19篇
  2014年   15篇
  2013年   30篇
  2012年   12篇
  2011年   54篇
  2010年   52篇
  2009年   59篇
  2008年   55篇
  2007年   35篇
  2006年   58篇
  2005年   34篇
  2004年   31篇
  2003年   29篇
  2002年   7篇
  2001年   5篇
  2000年   4篇
  1999年   7篇
  1998年   6篇
  1997年   4篇
  1996年   13篇
  1995年   8篇
  1994年   6篇
  1993年   6篇
  1992年   2篇
  1991年   5篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1980年   4篇
  1978年   1篇
  1977年   1篇
排序方式: 共有649条查询结果,搜索用时 281 毫秒
101.
http://dx.doi.org/10.1016/j.gsf.2016.04.002   总被引:1,自引:1,他引:0  
Population synthesis studies into planet formation have suggested that distributions consistent with observations can only be reproduced if the actual Type Ⅰ migration timescale is at least an order of magnitude longer than that deduced from linear theories.Although past studies considered the effect of the Type I migration of protoplanetary embryos,in most cases they used a conventional formula based on static torques in isothermal disks,and employed a reduction factor to account for uncertainty in the mechanism details.However,in addition to static torques,a migrating planet experiences dynamic torques that are proportional to the migration rate.These dynamic torques can impact on planet migration and predicted planetary populations.In this study,we derived a new torque formula for Type Ⅰ migration by taking into account dynamic corrections.This formula was used to perform population synthesis simulations with and without the effect of dynamic torques.In many cases,inward migration was slowed significantly by the dynamic effects.For the static torque case,gas giant formation was effectively suppressed by Type I migration;however,when dynamic effects were considered,a substantial fraction of cores survived and grew into gas giants.  相似文献   
102.
利用卫星观测的气溶胶光学厚度资料和模式模拟数据,与地面颗粒物观测资料结合,探讨近地面颗粒物质量浓度的估算方法。具体包括:利用区域气侯模式RAMS(Regional Atmospheric Modeling System)模拟的边界层高度对气溶胶光学厚度进行垂直订正,获得近地面颗粒物消光系数;利用模式模拟的相对湿度和颗粒物吸湿增长经验模型对消光系数进行湿度订正,获得近地面颗粒物干消光系数;并基于干消光系数与颗粒物质量浓度地面站点资料建立的统计关系估算获得每个像元的颗粒物质量浓度。利用地面站点观测的颗粒物浓度资料验证表明,基于卫星资料可以获得近地面颗粒物质量浓度,而且细颗粒物质量浓度具有更好的估算精度。  相似文献   
103.
M. Min  C.P. Dullemond  C. Dominik 《Icarus》2011,212(1):416-426
The precise location of the water ice condensation front (‘snow line’) in the protosolar nebula has been a debate for a long time. Its importance stems from the expected substantial jump in the abundance of solids beyond the snow line, which is conducive to planet formation, and from the higher ‘stickiness’ in collisions of ice-coated dust grains, which may help the process of coagulation of dust and the formation of planetesimals. In an optically thin nebula, the location of the snow line is easily calculated to be around 3 AU, subject to brightness variations of the young Sun. However, in its first 5-10 myr, the solar nebula was optically thick, implying a smaller snowline radius due to shielding from direct sunlight, but also a larger radius because of viscous heating. Several models have attempted to treat these opposing effects. However, until recently treatments beyond an approximate 1 + 1D radiative transfer were unfeasible. We revisit the problem with a fully self-consistent 3D treatment in an axisymmetric disk model, including a density-dependent treatment of the dust and ice sublimation. We find that the location of the snow line is very sensitive to the opacities of the dust grains and the mass accretion rate of the disk. We show that previous approximate treatments are quite efficient at determining the location of the snow line if the energy budget is locally dominated by viscous accretion. Using this result we derive an analytic estimate of the location of the snow line that compares very well with results from this and previous studies. Using solar abundances of the elements we compute the abundance of dust and ice and find that the expected jump in solid surface density at the snow line is smaller than previously assumed. We further show that in the inner few AU the refractory species are also partly evaporated, leading to a significantly smaller solid state surface density in the regions where the rocky planets were formed.  相似文献   
104.
Large impacts not only create giant basins on terrestrial planets but also heat their interior by shock waves. We investigate the impacts that have created the largest basins existing on the planets: Utopia on Mars, Caloris on Mercury, Aitken on Moon, all formed at ∼4 Ga. We determine the impact-induced temperature increases in the interior of a planet using the “foundering” shock heating model of Watters et al. (Watters, W.A., Zuber, M.T., Hager, B.H. [2009]. J. Geophys. Res. 114, E02001. doi:10.1029/2007JE002964). The post-impact thermal evolution of the planet is investigated using 2D axi-symmetric convection in a spherical shell of temperature-dependent viscosity and thermal conductivity, and pressure-dependent thermal expansion. The impact heating creates a superheated giant plume in the upper mantle which ascends rapidly and develops a strong convection in the mantle of the sub-impact hemisphere. The upwelling of the plume rapidly sweeps up the impact-heated base of the mantle away from the core-mantle boundary and replaces it with the colder surrounding material, thus reducing the effects of the impact-heated base of the mantle on the heat flux out of core. However, direct shock heating of the core stratifies the core, suppresses the pre-existing thermal convection, and cripples a pre-existing thermally-driven core dynamo. It takes about 17, 4, and 5 Myr for the stratified cores of Mars, Mercury, and Moon to exhaust impact heat and resume global convection, possibly regenerating core dynamos.  相似文献   
105.
A key parameter for understanding the geodynamics of a terrestrial planet is the size of its core. Numerical evaluation of 28 different interior structure models of Mercury, Venus, Earth, the Moon, and Mars suggests that there is an almost linear relationship between the core radius and the extent of the seismic P-wave core shadow. A scaling law is derived from a simple mantle density and velocity model that permits the interpretation of respective seismic measurements on terrestrial planetary bodies.  相似文献   
106.
By the study of simple analogues, either in the form of simplified numerical models or laboratory experiments, considerable insights may be gained as to the likely roles of planetary size, rotation, thermal stratification and other factors in determining the principal length scales, styles of global circulation and dominant waves and instability processes active in the respective climate systems of Earth, Mars, Venus and Titan. In this review, we explore aspects of these analogues and demonstrate the importance of a number of key dimensionless parameters, most notably thermal Rossby and Rhines numbers and a measure of the dominant frictional or radiative timescale, in defining the type of circulation regime to be expected in a prototype planetary atmosphere subject to axisymmetric driving. These considerations help to place Mars, Venus, Titan and Earth into an appropriate context, and may also lay the foundations for predicting and understanding the climate and circulation regimes of (as yet undiscovered) Earth-like extra-solar planets. However, as recent discoveries of ‘super-Earth’ planets around some nearby stars are beginning to reveal, the parameter space determined from axisymmetrically forced prototype atmospheres may be incomplete and other factors, such as the possibility of tidally locked rotation and tidal forcing, may also need to be taken into account for some classes of extra-solar planet.  相似文献   
107.
Dipolarization fronts in the magnetotail plasma sheet   总被引:1,自引:0,他引:1  
We present a THEMIS study of a dipolarization front associated with a bursty bulk flow (BBF) that was observed in the central plasma sheet sequentially at X=−20.1, −16.7, and −11.0RE. Simultaneously, the THEMIS ground network observed the formation of a north-south auroral form and intensification of westward auroral zone currents. Timing of the signatures in space suggests earthward propagation of the front at a velocity of 300 km/s. Spatial profiles of current and electron density on the front reveal a spatial scale of 500 km, comparable to an ion inertial length and an ion thermal gyroradius. This kinetic-scale structure traveled a macroscale distance of 10RE in about 4 min without loss of coherence. The dipolarization front, therefore, is an example of space plasma cross-scale coupling. THEMIS observations at different geocentric distances are similar to recent particle-in-cell simulations demonstrating the appearance of dipolarization fronts on the leading edge of plasma fast flows in the vicinity of a reconnection site. Dipolarization fronts, therefore, may be interpreted as remote signatures of transient reconnection.  相似文献   
108.
Jens Teiser  Markus Küpper 《Icarus》2011,215(2):596-598
We have examined the influence of impact angle in collisions between small dust aggregates and larger dust targets through laboratory experiments. Targets consisted of μm-sized quartz dust and had a porosity of about 67%; the projectiles, between 1 and 5 mm in diameter, were slightly more compact (64% porosity). The collision velocity was centered at 20 m/s and impact angles range from 0° to 45°. At a given impact angle, the target gained mass for projectiles smaller than a threshold size, which decreases with increasing angle from about 3 mm to 1 mm. The fact that growth is possible up to the largest angles studied supports the idea of planetesimal formation by sweep-up of small dust aggregates.  相似文献   
109.
As a recent trend, the continuous increase of new technologies for space observations of new missions to Mars, Venus, and Titan, has stimulated vigorous experimental and theoretical studies on the collision process induced by interactions between plasma and planetary atmosphere. In order to facilitate the comprehension of these processes, this brief paper chose a collection of cross section data not always easily accessible. With the purpose of making a useful collection of such data we have collected both experimental and theoretical estimate for most of the expected collisions processes.  相似文献   
110.
Pfiesteria shumwayae Steidinger et Burkholder is now known to be present in New Zealand and occurs in estuaries around the country. The presence of Pfiesteria was initially determined by a polymerase chain reaction (PCR)‐based detection assay, using oligonucleotide primers targeted at ribosomal DNA extracted from estuarine water and sediments. Presence was confirmed by isolation from fresh sediments in the presence offish (Oreochromis mossambicus), followed by identification by scanning electron microscopy. The New Zealand isolates of P. shumwayae were ichthyotoxic in bioassays, but there is no historic evidence offish kills in New Zealand associated with the dinoflagellate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号