首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8014篇
  免费   1515篇
  国内免费   2195篇
测绘学   155篇
大气科学   1363篇
地球物理   2592篇
地质学   4551篇
海洋学   1892篇
天文学   77篇
综合类   333篇
自然地理   761篇
  2024年   33篇
  2023年   84篇
  2022年   210篇
  2021年   244篇
  2020年   287篇
  2019年   369篇
  2018年   285篇
  2017年   324篇
  2016年   379篇
  2015年   383篇
  2014年   550篇
  2013年   539篇
  2012年   447篇
  2011年   573篇
  2010年   424篇
  2009年   599篇
  2008年   638篇
  2007年   587篇
  2006年   571篇
  2005年   475篇
  2004年   423篇
  2003年   384篇
  2002年   388篇
  2001年   305篇
  2000年   342篇
  1999年   282篇
  1998年   258篇
  1997年   247篇
  1996年   219篇
  1995年   148篇
  1994年   158篇
  1993年   118篇
  1992年   95篇
  1991年   69篇
  1990年   69篇
  1989年   52篇
  1988年   40篇
  1987年   24篇
  1986年   14篇
  1985年   18篇
  1984年   15篇
  1983年   8篇
  1982年   14篇
  1981年   10篇
  1980年   4篇
  1979年   2篇
  1978年   7篇
  1977年   2篇
  1976年   1篇
  1954年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
81.
82.
83.
The sea floor of Fram Strait, the over 2500 m deep passage between the Arctic Ocean and the Norwegian-Greenland Sea, is part of a complex transform zone between the Knipovich mid-oceanic ridge of the Norwegian-Greenland Sea and the Nansen-Gakkel Ridge of the Arctic Ocean. Because linear magnetic anomalies formed by sea-floor spreading have not been found, the precise location of the boundary between the Eurasian and the North American plate is unknown in this region. Systematic surveying of Fram Strait with SEABEAM and high resolution seismic profiling began in 1984 and continued in 1985 and 1987, providing detailed morphology of the Fram Strait sea floor and permitting better definition of its morphotectonics. The 1984 survey presented in this paper provided a complete set of bathymetric data from the southernmost section of the Svalbard Transform, including the Molloy Fracture Zone, connecting the Knipovich Ridge to the Molloy Ridge; and the Molloy Deep, a nodal basin formed at the intersection of the Molloy Transform Fault and the Molloy Ridge. This nodal basin has a revised maximum depth of 5607 m water depth at 79°8.5N and 2°47E.  相似文献   
84.
依据水面红外发射和红外遥感测温原理,采用HDG-高灵敏度红外测温仪和常规测量仪器相结合的方法,在实验室空气稳定条件下,模拟测得了水面皮层破坏-复原(重建)的热力过程和气-水温差对水面皮层复原过程的影响,获得了大量的测量数据。数据分析表明,当气-水温差从3.0℃变为11.5℃时,水面皮层破坏可导致皮温增量从气-水温差3.0℃时的0.15℃变到11.5℃时的0.45℃,并发现恢复时间与气-水温差呈负线性关系。  相似文献   
85.
Salt-water inflows into the Baltic Sea are important events for renewing the deep and bottom waters of the deep basins of the Baltic Sea. These events occur only at irregular intervals. The last strong event was in January 1993 followed by minor inflows in winter 1993/1994. As a result of these inflows, the deep water of the central Baltic basins was completely renewed.Based on extensive observations of polycyclic aromatic hydrocarbons (PAHs) in water, fluffy layer material and surface sediments between 1992 and 1998, the transformation of PAHs and the modification of their distribution in the Baltic deep water is discussed in connection with the spreading of the inflowing highly saline and oxygen-rich water along its pathway from the sills into the central basins. In the course of the inflows in 1993/1994, the PAH concentration in the deep water of the different basins increased significantly. The concentrations were elevated, at least by a factor of 2 and as much as seven to eight times (for the four-ring PAHs) compared to the previous and the following years. Two hypotheses for the causes were discussed: the inflowing salt water may have entrained more highly polluted surface water in the western Baltic Sea, or it may have entrained contaminated fluffy layer material or sediment particles along the route of transport.  相似文献   
86.
87.
88.
89.
The biology, population dynamics, and production of Talorchestia brito were studied at two sandy beaches located on the Atlantic (Portugal) and on the Mediterranean (Tunisia) coasts, respectively. The seasonal variation in abundance and the overall densities were similar in both populations. Reproduction occurred from February to September in the Atlantic, and from March to early November in the Mediterranean. The sex ratio was male biased in the Atlantic, and female biased in the Mediterranean. Based on data from the Atlantic population, both abundance and the proportion of reproductive females were positively correlated with temperature, while the proportion of juveniles in the population was positively correlated with temperature and sediment moisture. On average, individuals from the Atlantic were larger than the ones from the Mediterranean. Life span was estimated at six to nine months in the Atlantic, and five to eight months in the Mediterranean. Talorchestia brito was shown to be a semiannual species, with iteroparous females producing two broods per year, and exhibited a bivoltine life cycle. The minimum age required for males' and females' sexual differentiation and for female sexual maturation was shorter in the Mediterranean. Growth production (P) was estimated at 0.19 g m−2 y−1 ash free dry weight (AFDW; 4.3 kJ m−2 y−1) in the Atlantic population, and 0.217 g m−2 y−1 AFDW (4.9 kJ m−2 y−1) in the Mediterranean one. Elimination production (E) was estimated at 0.35 g m−2 y−1 AFDW (7.9 kJ m−2 y−1) in the Atlantic, and 0.28 g m−2 y−1 AFDW (6.3 kJ m−2 y−1) in the Mediterranean. The average annual biomass ( ) (standing stock) was estimated at 0.032 g m−2 in the Atlantic beach, and 0.029 g m−2 in the Mediterranean one, resulting, respectively, in ratios of 5.9 and 7.5 and ratios of 10.8 and 9.6. Like other talitrids, T. brito exhibited geographic variation in morphometrical characteristics, sex ratio, growth rates, life span, and reproduction period, with the Atlantic population presenting a slower life history.  相似文献   
90.
Historical data of total dissolved inorganic carbon (CT), together with nitrate and phosphate, have been used to model the evolution of these constituents over the year in the Atlantic water of the Norwegian Sea. Changes in nutrient concentration in the upper layer of the ocean are largely related to biological activity, but vertical mixing with the underlying water will also have an impact. A mixing factor is estimated and used to compute the entrainment of these constituents into the surface water from below. After taking the mixing contribution into account, the resulting nutrient concentration changes are attributed to biological production or decay. The results of the model show that the change in CT by vertical mixing and by biological activity based on nutrient equivalents needs another sink to balance the carbon budget. It cannot be the atmosphere as the surface water is undersaturated with respect to carbon dioxide and is, thus, a source of CT in this region. Inasmuch as the peak deficit of carbon is more than a month later than for the nutrients, the most plausible explanation is that other nitrogen and phosphate sources than the inorganic salts are used together with dissolved inorganic carbon during this period. As nitrate and phosphate show a similar trend, it is unlikely that the explanation is the use of ammonia or nitrogen fixation but rather dissolved organic nitrogen and phosphate, while dissolved organic carbon is accumulating in the water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号