首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   7篇
  国内免费   1篇
地球物理   2篇
海洋学   2篇
天文学   159篇
  2023年   6篇
  2021年   1篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2010年   6篇
  2009年   15篇
  2008年   10篇
  2007年   14篇
  2006年   18篇
  2005年   18篇
  2004年   12篇
  2003年   14篇
  2002年   8篇
  2001年   9篇
  2000年   3篇
  1999年   6篇
  1998年   12篇
  1997年   1篇
  1996年   1篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
11.
The magnetosphere dynamics shows fast relaxation events following power-law distribution for many observable quantities during magnetic substorms. The emergence of such power-law distributions has been widely discussed in the framework of self-organized criticality and/or turbulence. Here, a different approach to the statistical features of these impulsive dynamical events is proposed in the framework of the thermodynamics of rare events [Lavenda, B.H., Florio, A., 1992. Thermodynamics of rare events, Int. J. Theor. Phys. 31, 1455–1475; Lavenda, B.H., 1995. Thermodynamics of Extremes. Albion]. In detail, an application of such a novel approach to the magnetospheric substorm avalanching dynamics as monitored by the auroral electroject index is discussed.  相似文献   
12.
The analysis of the stability and the dispersion properties of a counterstreaming plasma system with kappa distributions are extended here with the investigation of perpendicular instabilities. Purely growing filamentation (Weibel-like) modes propagating perpendicular to the background magnetic field can be excited in streaming plasmas with or without an excess of parallel temperature. In this case, however, the effect of suprathermal tails of kappa populations is opposite to that obtained for parallel waves: the growth rates can be higher and the instability faster than for Maxwellian plasmas. The unstable wavenumbers also extend to a markedly larger broadband making this instability more likely to occur in space plasmas with anisotropic distributions of kappa-type. The filamentation instability of counterstreaming magnetized plasmas could provide a plausible mechanism for the origin of two-dimensional transverse magnetic fluctuations detected at different altitudes in the solar wind.  相似文献   
13.
Propagation of radio waves in the ultrarelativistic magnetized electron–positron plasma of a pulsar magnetosphere is considered. The polarization state of the original natural waves is found to vary markedly on account of the wave mode coupling and cyclotron absorption. The change is most pronounced when the regions of mode coupling and cyclotron resonance approximately coincide. In cases when the wave mode coupling occurs above and below the resonance region, the resultant polarization appears essentially distinct. The main result of the paper is that in the former case the polarization modes become non-orthogonal. The analytical treatment of the equations of polarization transfer is accompanied by numerical calculations. The observational consequences of polarization evolution in pulsar plasma are discussed as well.  相似文献   
14.
The dominant emission from bare strange stars is thought to be electron–positron pairs, produced through spontaneous pair creation (SPC) in a surface layer of electrons tied to the star by a superstrong electric field. The positrons escape freely, but the electrons are directed towards the star and quickly fill all available states, such that their degeneracy suppresses further SPC. An electron must be reflected and gain energy in order to escape, along with the positron. Each escaping electron leaves a hole that is immediately filled by another electron through SPC. We discuss the collisional processes that produce escaping electrons. When the Landau quantization of the motion perpendicular to the magnetic field is taken into account, electron–electron collisions can lead to an escaping electron only through a multistage process involving higher Landau levels. Although the available estimates of the collision rate are deficient in several ways, it appears that the rate is too low for electron–electron collisions to be effective. A simple kinetic model for electron–quark collisions leads to an estimate of the rate of pair production that is analogous to thermionic emission, but the work function is poorly determined.  相似文献   
15.
We study the influence of the matter content of extragalactic jets on their morphology, dynamics and emission properties. For this purpose we consider jets of extremely different compositions, including pure leptonic and baryonic plasmas. Our work is based on two-dimensional relativistic hydrodynamic simulations of the long-term evolution of powerful extragalactic jets propagating into a homogeneous environment. The equation of state used in the simulations accounts for an arbitrary mixture of electrons, protons and electron–positron pairs. Using the hydrodynamic models, we have also computed synthetic radio maps and the thermal bremsstrahlung X-ray emission from their cavities.
Although there is a difference of about three orders of magnitude in the temperatures of the cavities inflated by the simulated jets, we find that both the morphology and the dynamic behaviour are almost independent of the assumed composition of the jets. Their evolution proceeds in two distinct epochs. During the first one, multidimensional effects are unimportant and the jets propagate ballistically. The second epoch starts when the first larger vortices are produced near the jet head, causing the beam cross-section to increase and the jet to decelerate. The evolution of the cocoon and cavity is in agreement with a simple theoretical model. The beam velocities are relativistic  ( Γ ≃4)  at kiloparsec scales, supporting the idea that the X-ray emission of several extragalactic jets may be due to relativistically boosted CMB photons. The radio emission of all models is dominated by the contribution of the hotspots. All models exhibit a depression in the X-rays surface brightness of the cavity interior, in agreement with recent observations.  相似文献   
16.
17.
G.E. Morfill  H.M. Thomas 《Icarus》2005,179(2):539-542
The plasma cloud mechanism of spoke formation in Saturn's rings, proposed by Goertz and Morfill in 1983, is revisited in the light of new data and the criticisms raised by Farmer and Goldreich [Farmer, A.J., Goldreich, P., 2005. Icarus. This issue]. It is concluded that the plasma cloud model satisfies all available observational and physical constraints.  相似文献   
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号