首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   444篇
  免费   46篇
  国内免费   156篇
大气科学   1篇
地球物理   44篇
地质学   586篇
海洋学   8篇
天文学   2篇
综合类   3篇
自然地理   2篇
  2024年   1篇
  2023年   4篇
  2022年   5篇
  2021年   2篇
  2020年   14篇
  2019年   11篇
  2018年   23篇
  2017年   22篇
  2016年   16篇
  2015年   12篇
  2014年   22篇
  2013年   31篇
  2012年   36篇
  2011年   14篇
  2010年   11篇
  2009年   23篇
  2008年   32篇
  2007年   32篇
  2006年   33篇
  2005年   40篇
  2004年   37篇
  2003年   31篇
  2002年   16篇
  2001年   31篇
  2000年   38篇
  1999年   26篇
  1998年   20篇
  1997年   18篇
  1996年   13篇
  1995年   12篇
  1994年   8篇
  1993年   6篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
排序方式: 共有646条查询结果,搜索用时 0 毫秒
641.
A型岩套的分类、判别标志和成因   总被引:54,自引:4,他引:54  
以新近在粤北开展A型岩套研究所获得的新数据,结合国内外文献中已发表的数据(17个岩体,124件样品),讨论了A型岩套亚类型划分的必要性和亚类型之间的判别方法。将A型岩套分为两亚类型三组。A1类型主要以似长石正长岩、碱性正长岩和响岩为主(AS组),SiO2不饱和、准铝、过碱-碱性岩石,通常含似长石,如方钠石、霞石、白榴石和钠沸石等为特征。A2亚类型为SiO2过饱和、碱质-亚碱质岩石。该亚类型又包括铝质A型花岗岩(AU她组)(弱过铝质、亚碱质岩石)和碱性花岗岩(AAG组)(准铝质、碱质-亚碱质岩石);后者通常含少量钠钙质和钠质辉石和角闪石。在地球化学特征上,A1亚型具低SiO2,高ALK和NK/A值,相对富氯低氟,低R1和高R2,低Y/Nb比(具OIB源区特征),高Nb/Ta,Zr/Hf,Eu/Eu*,LREE/HREE和锆石饱和温度等。A2亚型中,以AAG组为例,其许多地球化学特征与Al亚型相悖,如高SiO2,较低ALK,相对贫氯富氟,高R1和低R2,高10^4Ga/Al和Y/Nb(具IAB源区特征),低Nb/Ta,Eu/Eu*和LREE/HREE,以及高的锆石饱和温度等。A2亚型中ALAG组除铝过饱和外,其他地球化学特征很相似于.AAG组。利用R1-R2,Yb/Nb-Yb/Ta,Nb-Y-Ce,Nb/Ta-Nb等图解可有效地区分和判别A型岩套中Al和A2两种亚型。利用A1和A2亚型Sr,Nd同位素组成,以亏损地幔-全壳两端员混合模拟计算A2亚型花岗岩物质来源得出结论,其源区物质主要是以地幔端员占优势,地幔组分占68%~78%(7个岩体),只有Namibia的碱流岩为下地壳成因,其地幔组分仅占30%。A1亚型碱性正长岩(3个岩体)以亏损地幔-富集地幔两端员混合模拟计算表明,其源区物质中富集地幔端员所占比例较低,为4%~17%,表明A型岩套两亚型其源区物质组成有明显不同。  相似文献   
642.
康滇地轴冕宁杂岩的Sm-Nd同位素地质年代学初步研究   总被引:1,自引:0,他引:1  
通过冕宁杂岩的稀土元素、微量元素及Sm—Nd同位素组成分析发现:杂岩核部二辉片麻岩微量元素以Th富集为特征,而典型的太古代灰色片麻岩则为Th亏损;分布于杂岩边部的英云闪长质片麻岩及花岗质片麻岩与灰色片麻岩宏观特征相似,且有Th,Nb亏损,但强不相容元素强烈富集,配分型式强烈右倾,也有别于太古代灰色片麻岩。两类岩石的Nd模式年龄均小于2000Ma,推测该杂岩的部分岩石原岩(二辉片麻岩及斜长角闪岩)形成时代可能为早元古代晚期,它们在晋宁期强烈的构造岩浆活动中发生角闪岩相变质。岩石的Nd模式年龄(2008Ma~766Ma)显示该区在元古代有较大规模的地壳增长,基底岩石的形成时代有别于扬子地台周边地区。  相似文献   
643.
Radiogenic isotope data (initial Nd, Pb) and elemental concentrations for the Mooselookmeguntic igneous complex, a suite of mainly granitic intrusions in New Hampshire and western Maine, are used to evaluate petrogenesis and crustal variations across a mid-Paleozoic suture zone. The complex comprises an areally subordinate monzodiorite suite [377±2 Ma; εNd (at 370 Ma)=−2.7 to −0.7; initial 207Pb/204Pb=15.56–15.58] and an areally dominant granite [370±2 Ma; εNd (at 370 Ma)=−7.0 to −0.6; initial 207Pb/204Pb=15.55–15.63]. The granite contains meter-scale enclaves of monzodiorite, petrographically similar to but older than that of the rest of the complex [389±2 Ma; εNd (at 370 Ma)=−2.6 to +0.3; initial 207Pb/204Pb 15.58, with one exception]. Other granite complexes in western Maine and New Hampshire are 30 Ma older than the Mooselookmeguntic igneous complex granite, but possess similar isotopic signatures.

Derivation of the monzodioritic rocks of the Mooselookmeguntic igneous complex most likely occurred by melting of Bronson Hill belt crust of mafic to intermediate composition. The Mooselookmeguntic igneous complex granites show limited correlation of isotopic variations with elemental concentrations, precluding any significant presence of mafic source components. Given overlap of initial Nd and Pb isotopic compositions with data for Central Maine belt metasedimentary rocks, the isotopic heterogeneity of the granites may have been produced by melting of rocks in this crustal package or through a mixture of metasedimentary rocks with magmas derived from Bronson Hill belt crust.

New data from other granites in western Maine include Pb isotope data for the Phillips pluton, which permit a previous interpretation that leucogranites were derived from melting heterogeneous metasedimentary rocks of the Central Maine belt, but suggest that granodiorites were extracted from sources more similar to Bronson Hill belt crust. Data for the Redington pluton are best satisfied by generation from sources in either the Bronson Hill belt or Laurentian basement. Based on these data, we infer that Bronson Hill belt crust was more extensive beneath the Central Maine belt than previously recognized and that mafic melts from the mantle were not important to genesis of Devonian granite magma.  相似文献   

644.
峨眉山玄武岩Sr、Nd、Pb同位素特征及其物源探讨   总被引:30,自引:3,他引:30  
张招崇  王福生 《地球科学》2003,28(4):431-439
选择峨眉山玄武岩区2个出露最全的云南永胜大迪里剖面和宾川上仓剖面进行了Sr、Nd、Pb同位素地球化学研究.结果表明, 少数样品的Pb同位素与Hanan和Graham定义的C组分相似, 而大多数样品则不在C组分范围之内, 说明除地幔柱物质外, 有岩石圈物质的加入.在多元同位素图解上, 峨眉山玄武岩位于EMⅠ、EMⅡ和DMM三端元之间, 表明其源区可以由地幔柱、富集的岩石圈地幔和地壳不同程度的混合来解释.结合已有的微量元素资料分析, 其中的地壳组分主要为下地壳, 而早期玄武质岩浆在上升过程中由于通道不畅通, 有较多的上地壳组分的混染.岩石圈地幔的富集作用可能与地幔柱释放出的小体积富Na、P而贫K的流体交代作用有关.粗面岩的同位素组成和玄武岩接近, 说明粗面岩是玄武质岩浆分离结晶作用形成的.   相似文献   
645.
High-pressure (HP) granulites form either in the domain of the subducted plate during continental collision or in supra-subduction systems where the thermally softened upper plate is shortened and thickened. Such a discrepancy in tectonic setting can be evaluated by metamorphic pressure–temperature–time-deformation (P–T–t–D) paths. In the current study, P–T–t–D paths of Early Palaeozoic HP granulite facies rocks, in the form of metabasic lenses enclosed in migmatitic metapelite, from the Dunhuang block, NW China, are investigated in order to constrain the nature of the HP rocks and shed light on the geodynamic evolution of a modern hot orogenic system in an active margin setting. The rocks show a polyphase evolution characterized by (1) relics of horizontal or gently dipping fabric (S1) preserved in cores of granulite lenses and in garnet porphyroblasts, (2) a N-S trending sub-vertical fabric (S2) preserved in low-strain domains and (3) upright folds (F3) associated with a ubiquitous steep E-W striking axial planar foliation (S3). Garnet in the granulites preserves relics of a prograde mineral assemblage M1a equilibrated at ~11.5 kbar and ~770–780°C, whereas the matrix granulite assemblage (M1b) from the S1 fabric attained peak pressure at ~13.5 kbar and ~850°C. The granulites were overprinted at ~8–11 kbar and ~850–900°C during crustal melting (M2) followed by partial re-equilibration (M3) at ~8 kbar and ~625°C. A garnet Lu–Hf age of 421.6 ± 1.2 Ma dates metamorphism M1, while a garnet Sm–Nd age of 385.3 ± 4.0 Ma reflects M3 cooling of the granulites. The mineral assemblage, M1, of the host migmatitic metapelite formed at ~9–12.5 kbar and ~760–810°C, partial melting and migmatization (M2) occurred at ~7 kbar and ~760°C and re-equilibration (M3) at ~5–6 kbar and ~675°C. A garnet Lu–Hf age of 409.7 ± 2.3 Ma dates thermal climax (M2) and a garnet Sm–Nd age of 356 ± 11 Ma constrains M3 for the migmatitic metapelites. The timing of this late phase is also bracketed by an emplacement age of syntectonic granite dated at c. 360 Ma. Decoupling of M1 and M2 P–T evolutions between the mafic granulites and migmatitic metapelites indicates their different positions in the crustal column, while the shared pressure–temperature (P–T) evolution M3 suggests formation of a mélange-like association during the late stages of orogeny. The high-pressure event D1-M1 is interpreted as a result of Late Silurian–Early Devonian moderate crustal thickening of a thermally softened and thinned pre-orogenic crust. The high-temperature (HT) re-equilibration D2-M2 is interpreted as a result of Mid-Devonian shortening of the previously thickened crust, possibly due to ‘Andean-type’ underthrusting. The D3-M3 event reflects Late Devonian supra-subduction shortening and continuous erosion of the sub-crustal lithosphere. This tectono-metamorphic sequence of events is explained by polyphased Andean-type deformation of a ‘Cascadia-type’ active margin, which corresponds to a supra-subduction tectonic switching paradigm.  相似文献   
646.
The generation of the continental crust is widely accepted to have taken place predominantly in the Archean, when TTG magmatism associated with greenstone-belt supracrustal succession development was typically followed by emplacement of high-K granites before crustal stabilization. This study focuses on the Campos Gerais complex (CGC), which is an Archean granite-greenstone belt lithological association in a tectonic window located in the southwesternmost portion of the São Francisco craton (SFC). The CGC is an important segment of Paleo- to Mesoarchean continental crust to be integrated into paleogeographic reconstructions prior to the transition into the Paleoproterozoic. This investigation reports field relationships, 28 major and trace element compositions, U–Pb (zircon) geochronological results, and Hf and Sm–Nd isotope data for orthogneiss and amphibolite samples. The results indicate that the CGC records a complex Archean crustal evolution, where voluminous 2.97 Ga TTG tonalites and trondhjemites (εNd(t) =  ? 4.7; TDM = 3.24 Ga) were followed by 2.89 Ga sanukitoid tonalite production (εNd(t) =  ? 1.9; TDM = 3.02 Ga), broadly coeval with the development of the Fortaleza de Minas and Pitangui greenstone-belts. These events are interpreted to represent the initial stage of an important subduction-accretion tectonic cycle, which ended with the emplacement of 2.82–2.81 Ga high-K leucogranites and migmatization of the TTG-sanukitoid crust, with hybrid and two-mica, peraluminous compositions (εNd(t) =  ? 8.0 to ? 8.6; TDM = 3.57 – 3.34 Ga). The presence of inherited zircons with 207Pb/206Pb ages of 3.08 Ga, 3.29 Ga, 3.55 Ga and 3.62 Ga indicates that the Mesoarchean tectonic processes involved reworking of Meso- to Eo-archean crust. Renewed TTG magmatism took place at ca. 2.77 Ga represented by juvenile tonalite stocks (εNd(t) = +1.0 to ? 1.5; TDM = 2.80 – 2.88 Ga) which intrude the TTG-greenstone belt association. Crustal stabilization was attained by 2.67 Ga, allowing for the emplacement of within-plate tholeiitic amphibolites (εNd(t) =  ? 3.1; TDM = 2.87 Ga). The CGC shows important tectonic diachronism with respect to other Archean terrains in the southern São Francisco craton, including an independent Meso- to Neoarchean crustal evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号