Stability conditions in an area located NW of Barcelona (Spain) are discussed. Here, several mass movements were observed, mainly affecting weathered Paleozoic slates. Many of these failures involved slopes cut along recent infrastructures: debris flows, wedge and plane failures, generally surficial, occurred more frequently. After a detailed geological and geomorphologic survey, geomechanic characterization was carried out, according to RMR and SMR classifications. This rating gave a prediction of slope behaviour, in fairly good agreement with the real observed one.
Stability numerical analysis was carried out for the main cut slopes, based upon the Limit Equilibrium Method. First of all, the deterministic factor of safety was computed using the mean values of parameters. After that, a simulation technique based upon the Monte Carlo Method was applied in order to obtain factor of safety distributions. The probability of failure was estimated as P(F<1).
Finally, results from deterministic and probabilistic approaches were compared. The effectiveness of different possible remedial measures was highlighted by means of a sensitivity analysis, which showed that the more important parameters in the study area are the geometrical ones (height, slope and failure plane angles). The final technical solutions adopted are briefly outlined. 相似文献
The performances of kriging, stochastic simulations and sequential self-calibration inversion are assessed when characterizing a non-multiGaussian synthetic 2D braided channel aquifer. The comparison is based on a series of criteria such as the reproduction of the original reference transmissivity or head fields, but also in terms of accuracy of flow and transport (capture zone) forecasts when the flow conditions are modified. We observe that the errors remain large even for a dense data network. In addition some unexpected behaviours are observed when large transmissivity datasets are used. In particular, we observe an increase of the bias with the number of transmissivity data and an increasing uncertainty with the number of head data. This is interpreted as a consequence of the use of an inadequate multiGaussian stochastic model that is not able to reproduce the connectivity of the original field. 相似文献
A model for the urban canyon is formulated for meteorologicalconditions of weak winds at night time. Thermal radiation, conductivity and convection are simulated by means of the Monte Carlo method. These are the main physical processesof energy transfer that give rise to the characteristic temperaturedistribution in these systems. The model has been satisfactory tested under ideal conditions for which analytical solutions exist.The predictions of the model under morerealistic conditions accurately reproduce the observationalresults. A strong temperature gradient across streets, with the canyon corners up to 4 °C warmer than the canyon centre, is found for the deepest canyons. This theoretical predictionhas been successfully verified with measurementstaken in a number of streets of the city of Granada in Spain. 相似文献
A wind-tunnel experiment was designed and carried out to study the effect of a surface roughness transition on subfilter-scale
(SFS) physics in a turbulent boundary layer. Specifically, subfilter-scale stresses are evaluated that require parameterizations
and are key to improving the accuracy of large-eddy simulations of the atmospheric boundary layer. The surface transition
considered in this study consists of a sharp change from a rough, wire-mesh covered surface to a smooth surface. The resulting
magnitude jump in aerodynamic roughnesses, M = ln(z01/z02), where z01 and z02 are the upwind and downwind aerodynamic surface roughnesses respectively, is similar to that of past experimental studies
in the atmospheric boundary layer. The two-dimensional velocity fields used in this study are measured using particle image
velocimetry and are acquired at several positions downwind of the roughness transition as well as over a homogeneous smooth
surface. Results show that the SFS stress, resolved strain rate and SFS transfer rate of resolved kinetic energy are dependent
on the position within the boundary layer relative to the surface roughness transition. A mismatch is found in the downwind
trend of the SFS stress and resolved strain rate with distance from the transition. This difference of behaviour may not be
captured by some eddy-viscosity type models that parameterize the SFS stress tensor as proportional to the resolved strain
rate tensor. These results can be used as a benchmark to test the ability of existing and new SFS models to capture the spatial
variability SFS physics associated with surface roughness heterogeneities. 相似文献
The Chinese government actively follows the low-carbon development pattern and has set the definite targets of reducing carbon emissions by 2030. The industrial sector plays a significant role in China's economic growth and CO2 emissions. This is the first study to present a specific investigation on the retrospective decomposition (1993–2014) and prospective trajectories (2015–2035) of China's industrial CO2 emission intensity (ICEI) and industrial CO2 emissions (ICE), aiming at China Industrial Green Development Plan 2016–2020 targets and China's 2030 CO2 emission-reduction targets. We introduce process carbon intensity, investment and R&D factors into the decomposition model and make a combination of dynamic Monte Carlo simulation and scenario analysis to identify whether and how the targets would be realized from a sector-specific perspective. The results indicate that investment intensity is the primary driver for the increase in ICEI, while R&D intensity and energy intensity are the leading contributors to the reduction in ICEI. Under existing policies, it is very possible for the industrial sector to achieve the 2020 and 2030 intensity-reduction targets. However, the realization of 2030 emission-peak target has some uncertainties and needs extra efforts in efficiency improvement and structural adjustment. All the five scenarios would achieve the 2020 and 2030 intensity-reduction targets, except Scenario N4 for China Industrial Green Development Plan 2016–2020 target. Nonetheless, only three scenarios would realize the 2030 emission-peak target. With strong efficiency improvement and structural adjustment, ICE would hit the peak in 2025. In contrast, with high/low efficiency improvement and weak structural adjustment, ICE would fail to reach the peak before 2035. Both ICEI and ICE have substantial mitigation potentials with the enhancement of efficiency improvement and structural adjustment. Finally, we suggest that the Chinese government should raise the baseline requirements of efficiency improvement and structural adjustment for the industrial sector to achieve China’s 2030 targets. 相似文献