首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   556篇
  免费   22篇
  国内免费   4篇
大气科学   2篇
地球物理   13篇
地质学   16篇
天文学   550篇
综合类   1篇
  2024年   3篇
  2023年   11篇
  2022年   4篇
  2021年   1篇
  2020年   3篇
  2019年   4篇
  2018年   8篇
  2015年   4篇
  2014年   5篇
  2013年   6篇
  2012年   9篇
  2011年   37篇
  2010年   22篇
  2009年   54篇
  2008年   43篇
  2007年   48篇
  2006年   53篇
  2005年   65篇
  2004年   47篇
  2003年   45篇
  2002年   22篇
  2001年   14篇
  2000年   12篇
  1999年   9篇
  1998年   10篇
  1997年   1篇
  1996年   5篇
  1995年   6篇
  1994年   2篇
  1993年   7篇
  1992年   3篇
  1991年   1篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有582条查询结果,搜索用时 31 毫秒
71.
The image-processing techniques used by Peng et al. are further improved to measure precisely the positions of Saturn and its satellites. 495 CCD images taken with the 1-m telescope at the Yunnan Observatory during the years 2002–2004 are processed with these techniques. These measured pixel positions are compared to their theoretical positions computed with the ephemerides of TASS1.7 for the satellites and JPL DE405 for Saturn itself. Analysis of the data for the intersatellite positions among four bright Saturnian satellites (S3–S6) and for Saturn–satellite (i.e. Saturn–Titan) positions shows that these measured positions have the same dispersions, i.e. about 0.05 and 0.06 arcsec in right ascension and declination, respectively. However, for the fainter satellites, Enceladus and Mimas, poorer residuals up to 0.1 and 0.2 arcsec, respectively, in both directions are found mainly due to their small separations from the primary planet and short exposure time in order to obtain useful images of Saturn.  相似文献   
72.
73.
Junko Kominami  Shigeru Ida 《Icarus》2004,167(2):231-243
We have performed N-body simulations on final accretion stage of terrestrial planets, including the eccentricity and inclination damping effect due to tidal interaction with a gas disk. We investigated the dependence on a depletion time scale of the disk, and the effect of secular perturbations by Jupiter and Saturn. In the final stage, terrestrial planets are formed through coagulation of protoplanets of about the size of Mars. They would collide and grow in a decaying gas disk. Kominami and Ida [Icarus 157 (2002) 43-56] showed that it is plausible that Earth-sized, low-eccentricity planets are formed in a mostly depleted gas disk. In this paper, we investigate the formation of planets in a decaying gas disk with various depletion time scales, assuming disk surface density of gas component decays exponentially with time scale of τgas. Fifteen protoplanets with are initially distributed in the terrestrial planet regions. We found that Earth-sized planets with low eccentricities are formed, independent of initial gas surface density, when the condition (τcross+τgrowth)/2?τgas?τcross is satisfied, where τcross is the time scale for initial protoplanets to start orbit crossing in a gas-free case and τgrowth is the time scale for Earth-sized planets to accrete during the orbit crossing stage. In the cases satisfying the above condition, the final masses and eccentricities of the largest planets are consistent with those of Earth and Venus. However, four or five protoplanets with the initial mass remain. In the final stage of terrestrial planetary formation, it is likely that Jupiter and Saturn have already been formed. When Jupiter and Saturn are included, their secular perturbations pump up eccentricities of protoplanets and tend to reduce the number of final planets in the terrestrial planet regions. However, we found that the reduction is not significant. The perturbations also shorten τcross. If the eccentricities of Jupiter and Saturn are comparable to or larger than present values (∼0.05), τcross become too short to satisfy the above condition. As a result, eccentricities of the planets cannot be damped to the observed value of Earth and Venus. Hence, for the formation of terrestrial planets, it is preferable that the secular perturbations from Jupiter and Saturn do not have significant effect upon the evolution. Such situation may be reproduced by Jupiter and Saturn not being fully grown, or their eccentricities being smaller than the present values during the terrestrial planets' formation. However, in such cases, we need some other mechanism to eliminate the problem that numerous Mars-sized planets remain uncollided.  相似文献   
74.
Potential contractional folds on Jupiter's icy moon Europa have been identified. The best example is at the extensional band Astypalaea Linea, where a series of subtle topographic undulations, 25 km in wavelength, possess parasitic tectonic features that support a folding origin. A scenario has been qualitatively proposed, whereby folds form via unstable contraction of the icy lithosphere, compensate for extension elsewhere on Europa, and then subsequently relax. Here, we quantitatively address this scenario, applying a model for viscous-plastic buckling of planetary lithospheres and finite element simulations of topographic relaxation. Our results suggest that the lithosphere of Europa could indeed be unstable, but the low required surface temperatures limit fold formation to higher latitudes, and the high required driving stresses (9–10 MPa) are difficult to achieve on the satellite. The depth to the brittle–ductile transition is well constrained, and high thermal gradients are indicated, implying heat flows near 100 mW m−2. In addition, topographic relaxation progresses so slowly even at these heat flows that it is not a viable mechanism to eliminate such features over the age of Europa's surface. Given the paucity of identified folds, we conclude that the necessary conditions for their formation are rare and that lithospheric folding is a minor mechanism for compensating the large amounts of extension seen elsewhere on Europa.  相似文献   
75.
Assuming that an unknown mechanism (e.g., gas turbulence) removes most of the subnebula gas disk in a timescale shorter than that for satellite formation, we develop a model for the formation of regular (and possibly at least some of the irregular) satellites around giant planets in a gas-poor environment. In this model, which follows along the lines of the work of Safronov et al. [1986. Satellites. Univ. of Arizona Press, Tucson, pp. 89-116], heliocentric planetesimals collide within the planet's Hill sphere and generate a circumplanetary disk of prograde and retrograde satellitesimals extending as far out as ∼RH/2. At first, the net angular momentum of this proto-satellite swarm is small, and collisions among satellitesimals leads to loss of mass from the outer disk, and delivers mass to the inner disk (where regular satellites form) in a timescale ?105 years. This mass loss may be offset by continued collisional capture of sufficiently small <1 km interlopers resulting from the disruption of planetesimals in the feeding zone of the giant planet. As the planet's feeding zone is cleared in a timescale ?105 years, enough angular momentum may be delivered to the proto-satellite swarm to account for the angular momentum of the regular satellites of Jupiter and Saturn. This feeding timescale is also roughly consistent with the independent constraint that the Galilean satellites formed in a timescale of 105-106 years, which may be long enough to accommodate Callisto's partially differentiated state [Anderson et al., 1998. Science 280, 1573; Anderson et al., 2001. Icarus 153, 157-161]. In turn, this formation timescale can be used to provide plausible constraints on the surface density of solids in the satellitesimal disk (excluding satellite embryos for satellitesimals of size ∼1 km), which yields a total disk mass smaller than the mass of the regular satellites, and means that the satellites must form in several ∼10 collisional cycles. However, much more work will need to be conducted concerning the collisional evolution both of the circumplanetary satellitesimals and of the heliocentric planetesimals following giant planet formation before one can assess the significance of this agreement. Furthermore, for enough mass to be delivered to form the regular satellites in the required timescale one may need to rely on (unproven) mechanisms to replenish the feeding zone of the giant planet. We compare this model to the solids-enhanced minimum mass (SEMM) model of Mosqueira and Estrada [2003a. Icarus 163, 198-231; 2003b. Icarus 163, 232-255], and discuss its main consequences for Cassini observations of the saturnian satellite system.  相似文献   
76.
Yohai Kaspi  Glenn R. Flierl 《Icarus》2009,202(2):525-542
The giant gas planets have hot convective interiors, and therefore a common assumption is that these deep atmospheres are close to a barotropic state. Here we show using a new anelastic general circulation model that baroclinic vorticity contributions are not negligible, and drive the system away from an isentropic and therefore barotropic state. The motion is still aligned with the direction of the axis of rotation as in a barotropic rotating fluid, but the wind structure has a vertical shear with stronger winds in the atmosphere than in the interior. This shear is associated with baroclinic compressibility effects. Most previous convection models of giant planets have used the Boussinesq approximation, which assumes the density is constant in depth; however, Jupiter's actual density varies by four orders of magnitude through its deep molecular envelope. We therefore developed a new general circulation model (based on the MITgcm) that is anelastic and thereby incorporates this density variation. The model's geometry is a full 3D sphere down to a small inner core. It is nonhydrostatic, uses an equation of state suitable for hydrogen-helium mixtures (SCVH), and is driven by an internal heating profile. We demonstrate the effect of compressibility by comparing anelastic and Boussinesq cases. The simulations develop a mean state that is geostrophic and hydrostatic including the often neglected, but significant, vertical Coriolis contribution. This leads to modification of the standard thermal wind relation for a deep compressible atmosphere. The interior flow organizes in large cyclonically rotating columnar eddies parallel to the rotation axis, which drive upgradient angular momentum eddy fluxes, generating the observed equatorial superrotation. Heat fluxes align with the axis of rotation, and provide a mechanism for the transport of heat poleward, which can cause the observed flat meridional emission. We address the issue of over-forcing which is common in such convection models and analyze the dependence of our results on this; showing that the vertical wind structure is not very sensitive to the Rayleigh number. We also study the effect of rotation, showing how the transition from a rapidly to a slowly rotating system affects the dynamics.  相似文献   
77.
We study the torque on low-mass protoplanets on fixed circular orbits, embedded in a protoplanetary disc in the isothermal limit. We consider a wide range of surface density distributions including cases where the surface density increases smoothly outwards. We perform both linear disc response calculations and non-linear numerical simulations. We consider a large range of viscosities, including the inviscid limit, as well as a range of protoplanet mass ratios, with special emphasis on the co-orbital region and the corotation torque acting between disc and protoplanet.
For low-mass protoplanets and large viscosity, the corotation torque behaves as expected from linear theory. However, when the viscosity becomes small enough to enable horseshoe turns to occur, the linear corotation torque exists only temporarily after insertion of a planet into the disc, being replaced by the horseshoe drag first discussed by Ward. This happens after a time that is equal to the horseshoe libration period reduced by a factor amounting to about twice the disc aspect ratio. This torque scales with the radial gradient of specific vorticity, as does the linear torque, but we find it to be many times larger. If the viscosity is large enough for viscous diffusion across the co-orbital region to occur within a libration period, we find that the horseshoe drag may be sustained. If not, the corotation torque saturates leaving only the linear Lindblad torques. As the magnitude of the non-linear co-orbital torque (horseshoe drag) is always found to be larger than the linear torque, we find that the sign of the total torque may change even for mildly positive surface density gradients. In combination with a kinematic viscosity large enough to keep the torque from saturating, strong sustained deviations from linear theory and outward or stalled migration may occur in such cases.  相似文献   
78.
We have developed a parametrization of Jovian moist convection based on a heat engine model of moist convection. In comparison to other moist convection schemes, this framework allows the computation of the total available convective energy TCAPE and the corresponding mass flux M as dynamic variables from the mean atmospheric state. The effects of this parametrization have been investigated both analytically and numerically. In agreement with previous numerical experiments and observations, the inclusion of moist convection leads to heat and water vapor transport from the water condensation level into higher altitudes. The time development of the modeled convective events was found to be strongly influenced by a rapid reduction of kinetic energy and a subsequent lowering of the cumulus tower's top in response to convective heating. We have tested the sensitivity of the scheme to different variations in the fractional cloud coverage and under the inclusion of external radiative forcing towards a stable/unstable temperature profile. While the time development of convective events differs in response to these variations, the general moist convective heating and moistening of the upper troposphere was a robust feature observed in all experiments.  相似文献   
79.
The results of astrometric observations of the main Uranian satellites taken with the Faulkes Telescope North are presented. A median filter algorithm was applied to subtract a scattered-light halo caused by Uranus. The Two-Micron All-Sky Survey (2MASS) and USNO-B1.0 were used as reference catalogues. The mean value of the differences between the equatorial coordinates of the satellites determined with 2MASS and USNO-B1.0 is close to 200 mas. A comparison of the observed equatorial coordinates of the satellites and their relative positions with ephemerides based on different combinations of theories of motion of Uranus and its satellites (DE405+GUST86, DE405+GUST06, INPOP+GUST86, INPOP+GUST06) was performed. The satellites' positions obtained with respect to 2MASS are in better agreement with theories. The values of (O−C) of the equatorial coordinates determined with the 2MASS are mainly less than 100 mas. The majority of (O−C) of relative positions are within ±50 mas. The mean values of the standard errors of (O−C) are within 20 to 60 mas.  相似文献   
80.
张健  张培瑜 《天文学报》2012,53(2):126-136
对《竹书纪年》记载的天象和纪年进行了初步的分析研究,结果表明,今本《竹书纪年》中新增的天象如日食等,并非汲冢出土佚书的原有内容,而为宋元以后学者所加.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号