首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   0篇
地球物理   1篇
地质学   3篇
天文学   62篇
  2022年   2篇
  2017年   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   5篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2002年   1篇
  2001年   5篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1995年   13篇
  1994年   5篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
41.
DuneXpress     
The DuneXpress observatory will characterize interstellar and interplanetary dust in-situ, in order to provide crucial information not achievable with remote sensing astronomical methods. Galactic interstellar dust constitutes the solid phase of matter from which stars and planetary systems form. Interplanetary dust, from comets and asteroids, represents remnant material from bodies at different stages of early solar system evolution. Thus, studies of interstellar and interplanetary dust with DuneXpress in Earth orbit will provide a comparison between the composition of the interstellar medium and primitive planetary objects. Hence DuneXpress will provide insights into the physical conditions during planetary system formation. This comparison of interstellar and interplanetary dust addresses directly themes of highest priority in astrophysics and solar system science, which are described in ESA’s Cosmic Vision. The discoveries of interstellar dust in the outer and inner solar system during the last decade suggest an innovative approach to the characterization of cosmic dust. DuneXpress establishes the next logical step beyond NASA’s Stardust mission, with four major advancements in cosmic dust research: (1) analysis of the elemental and isotopic composition of individual interstellar grains passing through the solar system, (2) determination of the size distribution of interstellar dust at 1 AU from 10 − 14 to 10 − 9 g, (3) characterization of the interstellar dust flow through the planetary system, (4) establish the interrelation of interplanetary dust with comets and asteroids. Additionally, in supporting the dust science objectives, DuneXpress will characterize dust charging in the solar wind and in the Earth’s magnetotail. The science payload consists of two dust telescopes of a total of 0.1 m2 sensitive area, three dust cameras totaling 0.4 m2 sensitive area, and a nano-dust detector. The dust telescopes measure high-resolution mass spectra of both positive and negative ions released upon impact of dust particles. The dust cameras employ different detection methods and are optimized for (1) large area impact detection and trajectory analysis of submicron sized and larger dust grains, (2) the determination of physical properties, such as flux, mass, speed, and electrical charge. A nano-dust detector searches for nanometer-sized dust particles in interplanetary space. A plasma monitor supports the dust charge measurements, thereby, providing additional information on the dust particles. About 1,000 grains are expected to be recorded by this payload every year, with 20% of these grains providing elemental composition. During the mission submicron to micron-sized interstellar grains are expected to be recorded in statistically significant numbers. DuneXpress will open a new window to dusty universe that will provide unprecedented information on cosmic dust and on the objects from which it is derived.  相似文献   
42.
Using the CMOR system, a search was conducted through 2.5 years (more than 1.5 million orbits) of archived data for meteoroids having unbound hyperbolic orbits around the Sun. Making use of the fact that each echo has an individually measured error, we were able to apply a cut-off for heliocentric speeds both more than two, and three standard deviations above the parabolic limit as our main selection criterion. CMOR has a minimum detectable particle radius near 100 μm for interstellar meteoroids. While these sizes are much larger than reported by the radar detections of extrasolar meteoroids by AMOR or Arecibo, the interstellar meteoroid population at these sizes would be of great astrophysical interest as such particles are more likely to remain unperturbed by external forces found in the interstellar medium, and thus, more likely to be traceable to their original source regions. It was found that a lower limit of approximately 0.0008% of the echoes (for the 3σ case) were of possible interstellar origin. For our effective limiting mass of 1×10−8 kg, this represents a flux of meteoroids arriving at the Earth of 6×10−6 meteoroids/km2/h. For our 2σ results, the lower limit was 0.003%, with a flux of 2×10−5 meteoroids/km2/h. The total number of events was too low to be statistically meaningful in determining any temporal or directional variations.  相似文献   
43.
Interstellar H2O and OH masers associated with massive star-forming regions can be classified into three morphological types: isolated H2O masers; isolated OH masers; and spatially overlapping OH/H2O maser groups. In a large sample of star-forming regions the total number of maser groups of each type is approximately equal. In order to account for these statistics we propose a pumping scheme based on a broadband radiative pump which produces inverted populations of both OH and H2O masers by a process involving predissociation and dissociation of H2O. This scheme overcomes some drawbacks of earlier radiative pumping models, and may account for the association of OH and H2O masers in massive star forming regions.  相似文献   
44.
本文发表继探测到恒星形成区的10个新H2O脉泽[1]后,再发现和证认的7个银河系星际H2O脉泽及其有关参量和谱线图。这些新H2O脉泽是与CO分子外流源[2-5]AFGL5142,HH-3,AFOL5157,NGC2023,RNO73,20126+4104,L1251-A成协的。它们与相应的外向流的中心IRAS点源间的平均位置差为|△α|=24''.8,|△δ|=27''。  相似文献   
45.
对分子云中甲醛的辐射传能问题用大速度梯度模型进行了分析和计算,以图解形式表示出气体温度为10K,20K,40K及70K的计算结果。表明在相似分辨率下的H_2CO 1_(10)—1_(11)和2_(11)—2_(12)谱线观测可以确定分子云中的气体密度和甲醛丰度。在20K—100K范围内,结果对气体温度的依赖并不十分强。 确定了Cirrus 7核区的某些物理参数。考虑到周围低密度气体的压力,用维里定理考察了此核区的稳定性,发现它是引力束缚的,可能处于动力学平衡状态,也可能坍缩形成低质量恒星。  相似文献   
46.
曾琴 《天文学报》1994,35(3):281-287
本文对猎户座IRc2的正、仲水脉泽区的物理条件作初步研究。结果表明在动能温度600K左右,尘埃温度低于350K,密度约10~(8±0.5)cm~(-3)和水对氢分子相对丰度与速度梯度比为4×10~(-9)pcskm~(-1)的条件下,仲水3_(13)—2_(20),5_(15)—4_(22)及正水6_(16)—5_(23),4_(14)—3_(21)脉泽可能同时呈现。这个区域的水丰度约为4×10~(-6)。热尘埃并不使脉泽加强,碰撞抽运是激发星际水脉泽的一个可能机制。高密度下,准共振碰撞效应的计入可以解释6_(16)—5_(23)脉泽的高亮温度。  相似文献   
47.
We calculate the spectrum of the diffuse cosmic gamma ray in the single and double leaky box models for several galactic distribution laws of cosmic rays and hdydrogen. The results show that LI Ti-pei's distribution law for the cosmic rays is the best and that the number of interstellar hydrogen molecules should be less than Gordon's value divided by 1.7. The observed spectrum of gamma rays can be reproduced by a suitable choice of the galactic distributions within certain ranges.  相似文献   
48.
本文使用IRAS巡天数据的最新版本IRAS巡天图(ISSA─coadded),经过进一步处理,得到了S142复合体红外发射的强度、温度及尘埃的分布。分析结果表明,分子云复合体的红外发射(在30角分的尺度范围内)总光度1.1×104L⊙,红外连续发射在12μm和100μm有着较大的延伸,热而小的尘埃微粒的平均色温是170K,冷而大的尘埃平均色温为29K,尘埃粒子密度随着对于最大值位置的偏移而迅速下降,HⅡ区内尘埃是严重衰减的。  相似文献   
49.
In this contribution, I present a broad historical review of the various hydrodynamical models that have been considered for explaining molecular outflows, and of their merits and failures when compared with observations. Wind-driven bubbles, viscous jet mixing-layers, and jet bowshocks, are discussed in turn. Most general properties of outflows can be understood in terms of a simple bowshock model. However, the detailed structure of outflows is more complex and not yet fully understood, given the presence of time variability in the jet velocity and/or direction. Finally, I discuss constraints on wind properties (momentum, mass-loss rate, radius) that can be derived from molecular outflows driven by jet bowshocks.  相似文献   
50.
Water is formed from two of the three most abundant elements in the universe and so is abundant in interstellar space, in our Solar System, and on Earth, where it is an essential compound for the existence of life as we know it. Water ice acts as a substrate and reactant in interstellar clouds of gas and dust, enabling the formation of organic compounds that are important precursors to life and that eventually became incorporated into comets and asteroids in the early Solar System. Laboratory experiments have allowed us to infer the reaction pathways and mechanisms by which some of these compounds are formed. In these reactions, water can act as an energy transfer medium, increasing product yields, or it can lower yields by diluting reaction centers. Water can also destroy organic compounds when water ice decomposes under ionizing radiation and the decomposition products attack the compounds; whether this happens depends critically on temperature and structure of the ice, whether crystalline or amorphous. Ice structure and temperature also largely determine its gas content. As the solar nebula collapsed, icy mantles on interstellar grains probably sublimated and then recondensed onto other grains, thus influencing the transport of energy, mass, and angular momentum in the disk. Icy grains also influenced the temperature structure of the disk because they influence mean disk opacity. Outside the “snow line” at 3–5 AU icy grains accreted to become part of comets and planetesimals that occupy the region of the outer planets, the Kuiper belt, and the Oort cloud. Water was acquired by the growing Earth by several mechanisms. Evidence from noble gas isotopes indicates that Earth achieved sufficient mass fast enough to capture an early H-rich atmosphere from the Solar nebula itself. Although the remnant of this primary atmosphere is now found only in the mantle, it may also reside in the core, which could contain most of the H on Earth (or none at all). The bulk silicate Earth contains only 500–1100 ppm H2O, an amount small enough to explain by “wet” accretion, although most of it probably accumulated with the latter half of Earth's mass from wetter planetary embryos originating beyond 1.5 AU. Degassing on impact delivered water to Earth's surface, where it dissolved into a magma ocean, a process that likely saved it from loss during subsequent catastrophic impacts such as the Moon-forming giant impact, which resulted in >99% loss of the noble gas inventory. Although most of Earth's water probably came from meteoritic material, the depletion on Earth of Xe relative to Kr strongly suggests a role for comets. The role of water in supporting life is an essential one on Earth and probably elsewhere, given the unusual properties of water compared with other potentially abundant compounds. Its dipolarity, high boiling point and heat of vaporization and, for ice, melting temperature; its expansion on freezing; and its solvent properties make it an ideal medium for life. Life originated early on Earth, indicating an abundance of water, nutrients, precursor molecules, substrates, and appropriate physical and chemical conditions. Life adapted quickly to (and may have originated in) extreme environments, of heat, cold, dryness, saltiness, and acidity. This adaptation to extreme conditions bodes well for the prospect of finding life elsewhere in our Solar System and in planetary systems around other stars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号