首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
地球物理   2篇
地质学   6篇
天文学   23篇
自然地理   4篇
  2012年   1篇
  2011年   8篇
  2010年   7篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
  1998年   1篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1985年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
21.
22.
We extend previous work on the global tectonic patterns generated by despinning with a self-consistent treatment of the isotropic despinning contraction that has been ignored. We provide simple analytic approximations that quantify the effect of the isotropic despinning contraction on the global shape and tectonic pattern. The isotropic despinning contraction of Mercury is ∼93 m (T/1 day)−2, where T is the initial rotation period. If we take into account both the isotropic contraction and the degree-2 deformations associated with despinning, the preponderance of compressional tectonic features on Mercury’s surface requires an additional isotropic contraction ?1 km (T/1 day)−2, presumably due to cooling of the interior and growth of the solid inner core. The isotropic despinning contraction of Iapetus is ∼9 m (T/16 h)−2, and it is not sensitive to the presence of a core or the thickness of the elastic lithosphere. The tectonic pattern expected for despinning, including the isotropic contraction, does not explain Iapetus’ ridge. Furthermore, the ridge remains unexplained with the addition of any isotropic compressional stresses, including those generating by cooling.  相似文献   
23.
Others have explained the excess flattening of Iapetus by a model in which the moon formed at a high spin rate, achieved isostatic equilibrium by very rapid interior heating caused by short-lived radioactive isotopes (SLRI), and subsequently cooled, locking in the excess flattening with respect to an equilibrium shape at its present spin rate. Here we propose an alternate model that does not require an unusually high initial spin rate or the SLRI. The initial formation of Iapetus results in a slightly oblate spheroid with porosity >10%. Radioactive heating by long-lived isotopes warms the interior to about 200 K, at which point it becomes ductile and the interior compacts by 10%, while the 120 km-thick exterior shell remains strong. The shell must deform to match the reduced volume of the ductile interior, and we propose that this deformation occurs along the equator, perhaps focused by a thinner equatorial shell. The final shape of the collapsed sphere matches the observed shape of Iapetus today, described as an oblate ellipse, except along the equator where strain concentration forms a broad ridge. To maintain this non-equilibrium shape, the thickness of the shell must exceed 120 km. Testing the equatorial focusing hypothesis will require a model that includes non-linear processes to account for the finite yield strength of the thick lithosphere. Nevertheless, we show that the stress in the lithosphere generated by the contraction of the interior is about 3 times greater than the stress needed to deform the lithosphere, so some type of lithospheric deformation is expected.  相似文献   
24.
Mikael Beuthe 《Icarus》2010,209(2):795-817
Contraction, expansion and despinning have been common in the past evolution of Solar System bodies. These processes deform the lithosphere until it breaks along faults. Their characteristic tectonic patterns have thus been sought for on all planets and large satellites with an ancient surface. While the search for despinning tectonics has not been conclusive, there is good observational evidence on several bodies for the global faulting pattern associated with contraction or expansion, though the pattern is seldom isotropic as predicted. The cause of the non-random orientation of the faults has been attributed either to regional stresses or to the combined action of contraction/expansion with another deformation (despinning, tidal deformation, reorientation). Another cause of the mismatch may be the neglect of the lithospheric thinning at the equator or at the poles due either to latitudinal variation in solar insolation or to localized tidal dissipation. Using thin elastic shells with variable thickness, I show that the equatorial thinning of the lithosphere transforms the homogeneous and isotropic fault pattern caused by contraction/expansion into a pattern of faults striking east-west, preferably formed in the equatorial region. By contrast, lithospheric thickness variations only weakly affect the despinning faulting pattern consisting of equatorial strike-slip faults and polar normal faults. If contraction is added to despinning, the despinning pattern first shifts to thrust faults striking north-south and then to thrust faults striking east-west. If the lithosphere is thinner at the poles, the tectonic pattern caused by contraction/expansion consists of faults striking north/south. I start by predicting the main characteristics of the stress pattern with symmetry arguments. I further prove that the solutions for contraction and despinning are dual if the inverse elastic thickness is limited to harmonic degree two, making it easy to determine fault orientation for combined contraction and despinning. I give two methods for solving the equations of elasticity, one numerical and the other semi-analytical. The latter method yields explicit formulas for stresses as expansions in Legendre polynomials about the solution for constant shell thickness. Though I only discuss the cases of a lithosphere thinner at the equator or at the poles, the method is applicable for any latitudinal variation of the lithospheric thickness. On Iapetus, contraction or expansion on a lithosphere thinner at the equator explains the location and orientation of the equatorial ridge. On Mercury, the combination of contraction and despinning makes possible the existence of zonal provinces of thrust faults differing in orientation (north-south or east-west), which may be relevant to the orientation of lobate scarps.  相似文献   
25.
Ever since their discovery the regular satellites of Jupiter and Saturn have held out the promise of providing an independent set of observations with which to test theories of planet formation. Yet elucidating their origins has proven elusive. Here we show that Iapetus can serve to discriminate between satellite formation models. Its accretion history can be understood in terms of a two-component gaseous subnebula, with a relatively dense inner region, and an extended tail out to the location of the irregular satellites, as in the SEMM model of Mosqueira and Estrada (2003a,b) (Mosqueira, I., Estrada, P.R. [2003a]. Icarus 163, 198-231; Mosqueira, I., Estrada, P.R. [2003b]. Icarus 163, 232-255). Following giant planet formation, planetesimals in the feeding zone of Jupiter and Saturn become dynamically excited, and undergo a collisional cascade. Ablation and capture of planetesimal fragments crossing the gaseous circumplanetary disks delivers enough collisional rubble to account for the mass budgets of the regular satellites of Jupiter and Saturn. This process can result in rock/ice fractionation as long as the make up of the population of disk crossers is non-homogeneous, thus offering a natural explanation for the marked compositional differences between outer solar nebula objects and those that accreted in the subnebulae of the giant planets. For a given size, icy objects are easier to capture and to ablate, likely resulting in an overall enrichment of ice in the subnebula. Furthermore, capture and ablation of rocky fragments become inefficient far from the planet for two reasons: the gas surface density of the subnebula is taken to drop outside the centrifugal radius, and the velocity of interlopers decreases with distance from the planet. Thus, rocky objects crossing the outer disks of Jupiter and Saturn never reach a temperature high enough to ablate either due to melting or vaporization, and capture is also greatly diminished there. In contrast, icy objects crossing the outer disks of each planet ablate due to the melting and vaporization of water-ice. Consequently, our model leads to an enhancement of the ice content of Iapetus, and to a lesser degree those of Titan, Callisto and Ganymede, and accounts for the (non-stochastic) compositions of these large, low-porosity outer regular satellites of Jupiter and Saturn. For this to work, the primordial population of planetesimals in the Jupiter-Saturn region must be partially differentiated, so that the ensuing collisional cascade produces an icy population of ?1 m size fragments to be ablated during subnebula crossing. We argue this is likely because the first generation of solar nebula ∼10 km planetesimals in the Jupiter-Saturn region incorporated significant quantities of 26Al. This is the first study successfully to provide a direct connection between nebula planetesimals and subnebulae mixtures with quantifiable and observable consequences for the bulk properties of the regular satellites of Jupiter and Saturn, and the only explanation presently available for Iapetus’ low density and ice-rich composition.  相似文献   
26.
Material of low geometric albedo (pV?0.1) is found on many objects in the outer Solar System, but its distribution in the saturnian satellite system is of special interest because of its juxtaposition with high-albedo ice. In the absence of clear, diagnostic spectral features, the composition of this low-albedo (or “dark”) material is generally inferred to be carbon-rich, but the form(s) of the carbon is unknown. Near-infrared spectra of the low-albedo hemisphere of Saturn's satellite Iapetus were obtained with the Visible-Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft at the fly-by of that satellite of 31 December 2004, yielding a maximum spatial resolution on the satellite's surface of ∼65 km. The spectral region 3-3.6 μm reveals a broad absorption band, centered at 3.29 μm, and concentrated in a region comprising about 15% of the low-albedo surface area. This is identified as the CH stretching mode vibration in polycyclic aromatic hydrocarbon (PAH) molecules. Two weaker bands attributed to CH2 stretching modes in aliphatic hydrocarbons are found in association with the aromatic band. The bands most likely arise from aromatic and aliphatic units in complex macromolecular carbonaceous material with a kerogen- or coal-like structure, similar to that in carbonaceous meteorites. VIMS spectra of Phoebe, encountered by Cassini on 11 June 2004, also show the aromatic hydrocarbon band, although somewhat weaker than on Iapetus. The origin of the PAH molecular material on these two satellites is unknown, but PAHs are found in carbonaceous meteorites, cometary dust particles, circumstellar dust, and interstellar dust.  相似文献   
27.
28.
Abstract Understanding the evolution and destruction of past oceans not only leads to a better understanding of earth history, but permits comparison with extant ocean basins and tectonic processes. This paper reviews the history of the Early Paleozoic circum-Atlantic oceans by analogy with the Pacific Ocean and Mesozoic Tethys. Rifting and continental separation from 620 to 570 Ma led to the development of passive margins along parts of the northern margin of Gondwana (the western coast of South America); eastern Laurentia (eastern North America, NW Scotland and East Greenland), and western Baltica (western Scandinavia). Meagre paleomagnetic data suggest that western South America and eastern North America could have been joined together to form facing margins after breakup. Although western Baltica is an apparently obvious candidate for the margin facing NW Scotland and East Greenland, the paleomagnetic uncertainties are so large that other fragments could have been positioned there instead. The Iapetus Ocean off northeastern Gondwana was probably a relatively wide Pacific-type ocean with, during the late Precambrian to early Ordovician, the northern margin of Gondwana as a site of continentward-dipping subduction zone(s). The 650-500 Ma arc-related igneous activity here and the associated deformation gave rise to the Cadomian, ‘Grampian’, Penobscotian, and Famantinian igneous and orogenic events. By 490-470 Ma, marginal basins had formed along the eastern Laurentian margin as far as NE Scotland, along parts of the northern margin of Gondwana, and off western Baltica, but none are known from the East Greenland margin. These basins closed and parts were emplaced as ophiolites shortly after their formation by processes that, at least in some cases, closely resemble the emplacement of the late Cretaceous Semail ophiolite of Oman. This orogenic phase seems to have involved collision and attempted subduction of the continental margin of Laurentia, Gondwana and Baltica. In Baltica it gave rise to some eclogite facies metamorphism. Marginal basin development may have been preceded by arc formation as early as ca 510 Ma. A double arc system evolved outboard from the eastern Laurentian and western Baltica margins, analogous to some of the arc systems in the present-day western Pacific. At 480-470 Ma, there was a second phase of breakup of Gondwana, affecting the active Gondwanan margin. Eastern and Western Avalonia, the Carolina Slate Belt, Piedmont, and other North American exotic continental blocks rifted away from Gondwana. Farther east, Armorica, Aquitainia, Iberia and several European exotic continental blocks also rifted away, though it is unlikely that they all rifted at the same time. Between 460-430 Ma, peaking at ca 450 Ma, orogenic events involved continuing arc-continent collision(s). From 435-400 Ma the remaining parts of the Eastern Iapetus Ocean were destroyed and the collision of Baltica with Laurentia caused the 430-400 Ma Scandian orogeny, followed by suturing of these continents during the Siluro-Devonian Acadian orogeny or Late Caledonian orogeny to 380 Ma, leaving a smaller but new ocean south of the fragments that had collided with the Laurentian margin farther south. The Ligerian orogeny 390-370 Ma collision of Gondwana-derived Aquitaine-Cantabrian blocks with Eastern Avalonia-Baltica and removed the part of the Iapetus south of Baltica. Prior to any orogenic events, the Eastern Iapetus Ocean between Baltica and Laurentia may have resembled the present-day central Atlantic Ocean between Africa and North America. The ocean appears to have closed asymmetrically, with arcs forming first outboard of the western margin of Baltica while the East Greenland margin was unaffected. The Western Iapetus Ocean between Laurentia and Gondwana also closed asymmetrically with a dual arc system developing off Laurentia and an arc system forming off the northern margin of Gondwana. Like the Pacific Ocean today, the Eastern Iapetus Ocean had a longer and more complex history than the Western Iapetus Ocean: it was already in existence at 560 Ma, probably developed over at least 400 million years, by mid-Cambrian time was many thousands of kilometres wide at maximum extent, and was associated with a < 30 million year phase of marginal basin formation. In contrast, the Western Iapetus Ocean appears to have been much narrower, shorter lived (probably < 100 million years), and associated with the rifting to form two opposing passive carbonate margins, analogous to the Mesozoic Tethys or the present-day Mediterranean.  相似文献   
29.
Coupling of thermal evolution and despinning of early Iapetus   总被引:2,自引:0,他引:2  
The Cassini mission revealed two spectacular characteristics of Iapetus: (1) a geologically old and high equatorial ridge, which is unique in the Solar System and (2) a large flattening of 35 km consistent with the equilibrium figure for a hydrostatic body rotating with a period of 16 h, whereas the current spin period is 79.33 days. This study describes three-dimensional simulations of solid-state convection within an undifferentiated Iapetus. It investigates the implications for the evolution of the interior thermal structure and its spin rate and global shape using radially layered viscoelastic models. The role of the concentration in the short-lived radiogenic element [26Al], just after accretion is completed, is specifically addressed. The first result is to show that whatever the [26Al] value, convection occurs. As suggested by Castillo-Rogez et al. [Castillo-Rogez, J., Matson, D., Sotin, C., Johnson, T., Lunine, J., Thomas, P. [2007] Icarus, 190, 179-202], convection reduces the warming of the interior compared to the conductive evolution and therefore limits the conditions for despinning. In our calculations, two conceptual linear viscoelastic models are used. When considering a Maxwell rheology, the interior temperature (viscosity) never reaches a value high (low) enough to induce despinning. In order to promote dissipation at low temperature, a Burgers rheology, which includes an additional dissipation peak, is introduced. For favorable parameter values, this latter rheology leads to despinning. However, only models associated with large amounts of short-lived radiogenic elements lead to the observed flattening. This suggests that the accretion process needs to be completed shortly after the formation of CAIs (Calcium-Aluminum-rich Inclusions) (?4 Myr). For [26Al] varying between 72 and 46 ppb, the observed flattening is obtained only for a limited range of initial spin period, between 9.5 and 10.2 h. For [26Al] ranging between 30 and 15 ppb, initial spin rates smaller than 8.5 h are required. For smaller values of [26Al], the body is too cold and viscous to acquire a significant flattening even if a rotation period close to the body disruption limit is considered. Even with a thin lithosphere during the early stage, our simulations show that Iapetus never reaches the equilibrium figure for a hydrostatic body due to the non-zero rigidity of the lithosphere. The 35 km value of the flattening is the result of the partial relaxation of an ancient larger flattening ranging between 45 and 80 km, depending on the evolution of the lithosphere thickness mainly controlled by the radiogenic content. A thin lithosphere is consistent with an early building of the equatorial ridge. The lithosphere thickening due to interior cooling can explain the preservation of the ridge throughout the remaining evolution of Iapetus.  相似文献   
30.
Carbon dioxide has been detected associated with Iapetus' dark material by the Cassini spacecraft. This CO2 may be primordial and/or resulting from ongoing production by photolysis of water-ice in the presence of carbonaceous material [Allamandola, L.J., Sandford, S.A., Valero, G.J., 1988. Icarus 76, 225-252]. Although any primordial CO2 would likely be complexed with the dark material and thus stable against thermal transport to Iapetus' poles [Buratti, B.J., and 28 colleagues, 2005. Astrophys. J. 622, L149-L152], active production of CO2 would result in some fraction of the CO2 being mobile enough to allow the accumulation of CO2 at Iapetus' poles. We develop a computer model to simulate ballistic transport of CO2 ice on Iapetus, accounting for Iapetus' gravitational binding energy and polar cold traps. We find that the residence time of CO2 ice outside the polar regions is very short; a sheet of CO2 ice near the equator of Iapetus decreases in thickness at a rate of 50 mm year−1. The sublimated CO2 will ballistically move around Iapetus until it reaches the polar cold traps where it can be sequestered for up to 15 years. If the total surface inventory of CO2 exceeds 3×107 kg, the polar ice cap will be permanent. While CO2 is moving around the surface, a small percentage will eventually reach escape velocity and be lost from the system. As such, a seasonal polar cap is lost at rate of 12% every solar orbit as the CO2 moves between the two polar cold traps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号