首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1768篇
  免费   15篇
  国内免费   2篇
测绘学   2篇
大气科学   4篇
地球物理   3篇
地质学   3篇
海洋学   3篇
天文学   1765篇
综合类   2篇
自然地理   3篇
  2023年   2篇
  2022年   8篇
  2021年   3篇
  2020年   8篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2015年   7篇
  2014年   12篇
  2013年   7篇
  2012年   22篇
  2011年   18篇
  2010年   18篇
  2009年   148篇
  2008年   116篇
  2007年   182篇
  2006年   176篇
  2005年   185篇
  2004年   137篇
  2003年   168篇
  2002年   117篇
  2001年   119篇
  2000年   105篇
  1999年   78篇
  1998年   109篇
  1997年   2篇
  1996年   1篇
  1995年   25篇
  1994年   3篇
  1990年   1篇
排序方式: 共有1785条查询结果,搜索用时 250 毫秒
931.
Charge‐transfer is the main process linking neutrals and charged particles in the interaction regions of neutral (or partly ionized) gas with a plasma. In this paper we illustrate the importance of charge‐transfer with respect to the dynamics and the structure of neutral gas‐plasma interfaces. We consider the following phenomena: (1) the heliospheric interface ‐ region where the solar wind plasma interacts with the partly‐ionized local interstellar medium (LISM) and (2) neutral interstellar clouds embedded in a hot, tenuous plasma such as the million degree gas that fills the so‐called “Local Bubble”. In (1), we discuss several effects in the outer heliosphere caused by charge exchange of interstellar neutral atoms and plasma protons. In (2) we describe the role of charge exchange in the formation of a transition region between the cloud and the surrounding plasma based on a two‐component model of the cloud‐plasma interaction. In the model the cloud consists of relatively cold and dense atomic hydrogen gas, surrounded by hot, low density, fully ionized plasma. We discuss the structure of the cloud‐plasma interface and the effect of charge exchange on the lifetime of interstellar clouds. Charge transfer between neutral atoms and minor ions in the plasma produces X‐ray emission. Assuming standard abundances of minor ions in the hot gas surrounding the cold interstellar cloud, we estimate the X‐ray emissivity consecutive to the charge transfer reactions. Our model shows that the charge‐transfer X‐ray emission from the neutral cloud‐plasma interface may be comparable to the diffuse thermal X‐ray emission from the million degree gas cavity itself (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
932.
A set of samples of 13 massive star-forming cores were observed in SiO (2-1), CH3OH (2-1) and C34S (2-1) thermal lines. Nine of these cores were detected in all three lines. Among the nine SiO detections, three were new detections, and relatively faint. Most of the lines have wide wings, which might be interpreted as the evidence of ongoing energetic out?ows in the cores. The line widths of SiO are generally the broadest, which might further suggest that the SiO emissions are due to higher velocity out?ow, and closer to the excited source. We derive the rotational temperatures, column densities and chemical relative abundances of the cores. There is a strong correlation between SiO and CH3OH abundances, with correlation coeffcient R = 0.77, but no correlation is observed between SiO and C34S.  相似文献   
933.
The origin of cosmic rays is one of the key questions in high-energy astrophysics. Supernovae have been always considered as the dominant sources of cosmic rays below the energy spectrum knee. Multi-wavelength observations indeed show that supernova remnants are capable for accelerating particles into sub-PeV (1015 eV) energies. Diffusive shock acceleration is considered as one of the most efficient acceleration mechanisms of astrophysical high-energy particles, which may just operate effectively in the large-scale shocks of supernova remnants. Recently, a series of high-precision ground and space experiments have greatly promoted the study of cosmic rays and supernova remnants. New observational features challenge the classical acceleration model by diffusive shock and the application to the scenario of supernova remnants for the origin of Galactic cosmic rays, and have deepened our understanding to the cosmic high-energy phenomena. In combination with the time evolution of radiation energy spectrum of supernova remnants, a time-dependent particle acceleration model is established, which can not only explain the anomalies in cosmic-ray distributions around 200 GV, but also naturally form the cosmic-ray spectrum knee, even extend the contribution of supernova particle acceleration to cosmic ray flux up to the spectrum ankle. This model predicts that the high-energy particle transport behavior is dominated by the turbulent convection, which needs to be verified by future observations and plasma numerical simulations relevant to the particle transport.  相似文献   
934.
The effectiveness of the ISM Code: A qualitative enquiry   总被引:1,自引:0,他引:1  
Studies conducted to determine the efficacy of the ISM Code in the past include investigations of the trends of accident numbers and insurance claims and users' perceptions. None of these, however, could produce a definitive conclusion. This is because both the use of safety outcome as well as the use of perception have inherent problems and are not reliable. This paper takes a different approach. It draws on wider research on management of workplace health and safety to ascertain whether or not employment and social conditions that support effective implementation of self-regulation are present in the maritime context. The findings reveal a considerable disparity between managers' and seafarers' understanding of the use of the Code resulting in a wide gap between its intended purpose and practice. The analysis shows that the critical factor is the lack of seafarers' participation in management of workplace health and safety. The underlying causal factors for such lack of participation were located in seafarers' poor employment condition and low-trust relationship with their managers.  相似文献   
935.
We investigate the extinction curves of young galaxies in which dust is supplied from Type II supernovae (SNe II) and/or pair instability supernovae (PISNe). Since at high redshift ( z > 5), low-mass stars cannot be dominant sources for dust grains, SNe II and PISNe, whose progenitors are massive stars with short lifetimes, should govern the dust production. Here, we theoretically investigate the extinction curves of dust produced by SNe II and PISNe, taking into account reverse shock destruction induced by collision with ambient interstellar medium. We find that the extinction curve is sensitive to the ambient gas density around a SN, since the efficiency of reverse shock destruction strongly depends on it. The destruction is particularly efficient for small-sized grains, leading to a flat extinction curve in the optical and ultraviolet wavelengths. Such a large ambient density as   n H≳ 1 cm−3  produces too flat an extinction curve to be consistent with the observed extinction curve for SDSS J1048+4637 at z = 6.2. Although the extinction curve is highly sensitive to the ambient density, the hypothesis that the dust is predominantly formed by SNe at z ∼ 6 is still allowed by the current observational constraints. For further quantification, the ambient density should be obtained by some other methods. Finally, we also discuss the importance of our results for observations of high- z galaxies, stressing a possibility of flat extinction curves.  相似文献   
936.
937.
938.
939.
940.
We investigate the dynamics of magnetic fields in spiral galaxies by performing 3D magnetohydrodynamics simulations of galactic discs subject to a spiral potential using cold gas, warm gas and a two-phase mixture of both. Recent hydrodynamic simulations have demonstrated the formation of interarm spurs as well as spiral arm molecular clouds, provided the interstellar medium model includes a cold H  i phase. We find that the main effect of adding a magnetic field to these calculations is to inhibit the formation of structure in the disc. However, provided a cold phase is included, spurs and spiral arm clumps are still present if β≳ 0.1 in the cold gas. A caveat to the two-phase calculations though is that by assuming a uniform initial distribution, β≳ 10 in the warm gas, emphasizing that models with more consistent initial conditions and thermodynamics are required. Our simulations with only warm gas do not show such structure, irrespective of the magnetic field strength.
Furthermore, we find that the introduction of a cold H  i phase naturally produces the observed degree of disorder in the magnetic field, which is again absent from simulations using only warm gas. Whilst the global magnetic field follows the large-scale gas flow, the magnetic field also contains a substantial random component that is produced by the velocity dispersion induced in the cold gas during the passage through a spiral shock. Without any cold gas, the magnetic field in the warm phase remains relatively well ordered apart from becoming compressed in the spiral shocks. Our results provide a natural explanation for the observed high proportions of disordered magnetic field in spiral galaxies and we thus predict that the relative strengths of the random and ordered components of the magnetic field observed in spiral galaxies will depend on the dynamics of spiral shocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号