首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1710篇
  免费   9篇
  国内免费   132篇
测绘学   62篇
大气科学   95篇
地球物理   418篇
地质学   992篇
海洋学   126篇
天文学   38篇
自然地理   120篇
  2024年   25篇
  2023年   67篇
  2022年   47篇
  2021年   68篇
  2020年   161篇
  2019年   89篇
  2018年   119篇
  2017年   178篇
  2016年   111篇
  2015年   132篇
  2014年   229篇
  2013年   354篇
  2012年   214篇
  2011年   1篇
  2010年   4篇
  2009年   1篇
  2007年   2篇
  2006年   4篇
  2005年   11篇
  2004年   11篇
  2003年   6篇
  2002年   16篇
  1993年   1篇
排序方式: 共有1851条查询结果,搜索用时 15 毫秒
11.
The aim of this paper is to study the effects of soil–structure interaction on the seismic response of coupled wall-frame structures on pile foundations designed according to modern seismic provisions. The analysis methodology based on the substructure method is recalled focusing on the modelling of pile group foundations. The nonlinear inertial interaction analysis is performed in the time domain by using a finite element model of the superstructure. Suitable lumped parameter models are implemented to reproduce the frequency-dependent compliance of the soil-foundation systems. The effects of soil–structure interaction are evaluated by considering a realistic case study consisting of a 6-storey 4-bay wall-frame structure founded on piles. Different two-layered soil deposits are investigated by varying the layer thicknesses and properties. Artificial earthquakes are employed to simulate the earthquake input. Comparisons of the results obtained considering compliant base and fixed base models are presented by addressing the effects of soil–structure interaction on displacements, base shears, and ductility demand. The evolution of dissipative mechanisms and the relevant redistribution of shear between the wall and the frame are investigated by considering earthquakes with increasing intensity. Effects on the foundations are also shown by pointing out the importance of both kinematic and inertial interaction. Finally, the response of the structure to some real near-fault records is studied. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
12.
The Sangdong scheelite–molybdenite deposit in northeast South Korea consists of strata-bound orebodies in intercalated carbonate-rich layers in the Cambrian Myobong slate formation. Among them, the M1 layer hosts the main orebody below which lie layers of F1–F4 host footwall orebodies. Each layer was first skarnized with the formation of a wollastonite + garnet + pyroxene assemblage hosting minor disseminated scheelite. The central parts of the layers were subsequently crosscut by two series of quartz veining events hosting minor scheelite and major scheelite–molybdenite ores, respectively. The former veins associate amphibole–magnetite (amphibole) alteration, whereas the latter veins host quartz–biotite–muscovite (mica) alteration. Deep quartz veins with molybdenite mineralization are hosted in the Cambrian Jangsan quartzite formation beneath the Myobong formation. In the Sunbawi area, which is in close proximity to the Sangdong deposit, quartz veins with scheelite mineralization are hosted in Precambrian metamorphic basement. Three muscovite 39Ar–40Ar ages between 86.6 ± 0.2 and 87.2 ± 0.3 Ma were obtained from M1 and F2 orebodies from the Sangdong deposit and Sunbawi quartz veins. The Upper Cretaceous age of the orebodies is concordant with the published ages of the hidden Sangdong granite, 87.5 ± 4.5 Ma. This strongly suggests that the intrusion is causative for the Sangdong W–Mo ores and Sunbawi veins.Fluid inclusions in the quartz veins from the M1 and F2 orebodies, the deep quartz-molybdenite veins, and the Sunbawi veins are commonly liquid-rich aqueous inclusions having bubble sizes of 10–30 vol%, apparent salinities of 2–8 wt% NaCl eqv., and homogenization temperatures of 180–350 °C. The densities of the aqueous inclusions are 0.70–0.94 g/cm3. No indication of fluid phase separation was observed in the vein. To constrain the formation depth in the Sangdong deposit, fluid isochores are combined with Ti–in–quartz geothermometry, which suggests that the M1 and F2 orebodies were formed at depths of 1–3 km and 5–6 km below the paleosurface, respectively. The similarity of the Cs (cesium) concentrations and Rb/Sr ratios in the fluid inclusions of the respective orebodies indicate an origin from source magmas having similar degrees of fractionation and enrichment of incompatible elements such as W and Mo. High S concentrations in the fluids and possibly organic C in the sedimentary source likely promoted molybdenite precipitation in the Sangdong orebodies, whereas the scheelite deposition in the deep quartz–molybdenite veins hosted in the quartzite is limited by a lack of Ca and Fe in the hydrothermal fluids. The molybdenite deposition in the Sunbawi quartz–molybdenite veins hosted in the Precambrian metamorphic basement rocks was possibly limited by a lack of reducing agents such as organic C.  相似文献   
13.
《International Geology Review》2012,54(15):1835-1864
The Yinshan deposit is a large epithermal-porphyry polymetallic deposit, and the timing and petrogenesis of ore-hosting porphyries have been hotly debated. We present new results from geochemical, whole-rock Sr–Nd and zircon U–Pb–Hf–O isotopic investigations. Zircon U–Pb data demonstrate that the quartz porphyry, dacitic porphyry, and quartz dioritic porphyry formed at ?172.2 ± 0.4 Ma, ?171.7 ± 0.5 Ma, and ?170.9 ± 0.3 Ma, respectively. Inherited zircon cores show significant age spreads from ?730 to ?1390 Ma. Geochemically, they are high-K calc-alkaline or shoshonitic rocks with arc-like trace element patterns. They have similar whole-rock Nd and zircon Hf isotopic compositions, yet an increasing trend in ?Nd(t) and ?Hf(t) values typifies the suite. Older (inherited) zircons of the three porphyries display Hf compositions comparable to those of the Jiangnan Orogen basement rocks. In situ zircon oxygen isotopic analyses reveal that they have similar oxygen isotopic compositions, which are close to those of mantle zircons. Moreover, a decreasing trend of δ18O values is present. We propose that the ore-related porphyries of the Yinshan deposit were emplaced contemporaneously and derived from partial melting of Neoproterozoic arc-derived mafic (or ultra-mafic) rocks. Modelling suggests that the quartz porphyries, dacitic porphyries, and quartz dioritic porphyries experienced ?25%, ?10%, and ?10% crustal contaminations by Shuangqiaoshan rocks. Our study provides important constraints on mantle–crust interaction in the genesis of polymetallic mineralization associated with Mesozoic magmatism in southeastern China.  相似文献   
14.
A distance cartogram is a diagram that visualizes the proximity indices between points in a network, such as time–distances between cities. The Euclidean distances between the points on the distance cartogram represent the given proximity indices. This is a useful visualization tool for the level of service of transport, e.g. difference in the level of service between regions or points in a network and its improvement in the course of time. The two previously proposed methods—multidimensional scaling (MDS) and network time–space mapping—have certain advantages and disadvantages. However, we observe that these methods are essentially the same, and the merits of both these methods can be combined to formulate a generalized solution. In this study, we first formulate the time–space mapping problem, which includes the key features of both of the above stated methods, and propose a generalized solution. We then apply this solution to the time–distances of Japan's railway networks to confirm its applicability.  相似文献   
15.
《地学前缘(英文版)》2020,11(3):843-853
The combination of U-Pb and Lu-Hf compositions measured in zircon crystals is a remarkably powerful isotopic couplet that provides measures on both the timing of mineral growth and the radiogenic enrichment of the source from which the zircon grew.The U-Pb age documents the timing of zircon crystallization/recrystallization and Hf isotopes inform on the degree to which the host melt was derived from a radiogenic reservoir(e.g.depleted mantle) versus an unradiogenic reservoir(e.g.ancient continental crust),or some mixture of these sources.The ease of generating large quantities of zircon U-Pb and Lu-Hf data has been in large part facilitated by instrument advances.However,the dramatic increase in time constrained zircon Lu-Hf analyses in the Earth science community has brought to the fore the importance of careful data collection and reduction workflows,onto which robust geological interpretations may be based.In this work,we discuss the fundamentals of Lu-Hf isotopes in zircon,which then allows us to provide a robust,accessible,methodology for the assessment of data quality.Additionally,we discuss some novel techniques for:data visualization—that facilitates better transparency of data interpretation;integration of geographic information—that may reveal spatial trends where temporal trends were only apparent before;and some novel statistical evaluation tools—that may provide more rigorous interand intra-sample comparisons.  相似文献   
16.
Abstract

Acropolis is an Fe-oxide–copper–gold prospect ~20?km from Olympic Dam, South Australia, and marked by near-coincident gravity and magnetic anomalies. Prospective Fe-oxide–apatite?±?sulfide veins occur in Mesoproterozoic and Paleoproterozoic volcanic and granitoid host units beneath unmineralised sedimentary formations. We have produced a geological map and history of the prospect using data from 16 diamond drill holes, including LA-ICPMS and high-precision CA-TIMS ages. The oldest unit is megacrystic granite of the Donington Suite (ca 1850?Ma). A non-conformity spanning ca 250 My separates the Donington Suite and felsic lavas and ignimbrites of the Gawler Range Volcanics (GRV; 1594.03?±?0.68?Ma). The GRV were intruded by granite of the Hiltaba Suite (1594.88?±?0.50?Ma) and felsic dykes (1593.88?±?0.56?Ma; same age as the Roxby Downs Granite at Olympic Dam). The felsic dykes are weakly altered and lack Fe-oxide–apatite–sulfide veins, suggesting that they post-date the main hydrothermal event. If correct, this relationship implies that the main hydrothermal event at Acropolis was ca 1594?Ma and pre-dated the main hydrothermal event at Olympic Dam. The GRV at Acropolis are the same age as the GRV at Olympic Dam and ca 3–7 My older than the GRV exposed in the Gawler Ranges. The gravity and magnetic anomalies coincide with sections through the GRV, Hiltaba Suite and Donington Suite that contain abundant, wide, Fe-oxide veins. The GRV, Hiltaba Suite and Donington Suite are unconformably overlain by the Mesoproterozoic Pandurra Formation or Neoproterozoic Stuart Shelf sedimentary formations. The Pandurra Formation shows marked lateral variations in thickness related to paleotopography on the underlying units and post-Pandurra Formation pre-Neoproterozoic faults. The Stuart Shelf sedimentary formations have uniform thicknesses.
  1. KEY POINTS
  2. Fe-oxide–apatite?±?sulfide veins are hosted by the Gawler Range Volcanics (1594.03?±?0.68?Ma), the Hiltaba Suite granite (1594.88?±?0.50?Ma) and Donington Suite granite (ca 1850?Ma).

  3. The age of felsic dykes (1593.88?±?0.56?Ma) interpreted to be post-mineralisation implies that the main hydrothermal event at Acropolis was ca 1594?Ma.

  4. The Gawler Range Volcanics at Acropolis are the same age as the Gawler Range Volcanics at Olympic Dam and ca 3 to 7 My older than the Gawler Range Volcanics exposed in the Gawler Ranges.

  相似文献   
17.
Soil–water interaction is a pivotal process in many underwater geohazards such as underwater landslides where soil sediments gradually evolve into turbidity currents after interactions with ambient water. Due to the large deformations, multiphase interactions and phase changes this involves, investigations from numerical modelling of the transition process have been limited so far. This study explores a simple numerical replication of such soil–water mixing with respect to changes in average strength using smoothed particle hydrodynamics (SPH). A uniform viscoplastic model is used for both the solid-like and fluid-like SPH particles. The proposed numerical solution scheme is verified by single-phase dam break tests and multiphase simple shear tests. SPH combinations of solid-like and fluid-like particles can replicate the clay–water mixture as long as the liquidity index of the solid-like particles is larger than unity. The proposed numerical scheme is shown to capture key features of an underwater landslide such as hydroplaning, water entrainment and wave generation and thus shows promise as a tool to simulate the whole process of subaquatic geohazards involving solid–fluid transition during mass transport.  相似文献   
18.
Land surface temperature (LST) is an important aspect in global to regional change studies, for control of climate change and balancing of high temperature. Urbanization is one of the influencing factors increasing land surface and atmospheric temperature, by the emission of greenhouse gases (e.g. CO2, NO and methane). In the present study, LST was derived from Landsat-8 of multitemporal data sets to analyse the spatial structure of the urban thermal environment in relation to the urban surface characteristics and land use–land cover (LULC). LST is influenced by the greenhouse gases i.e. CO2 plays an important role in increasing the earth’s surface temperature. In order to provide the evidence of influence of CO2 on LST, the relationship between LST, air temperature and CO2 was analysed. Landsat-8 satellite has two thermal bands, 10 and 11. These bands were used to accurately to calculate the temperature over the study area. Results showed that the strength of correlation between ground monitoring data and satellite data was high. Based on correlation values of each month April (R2 = 0.994), May (R2 = 0.297) and June (R2 = 0.934), observed results show that band 10 was significantly correlating with air temperature. Relationship between LST and CO2 levels were obtained from linear regression analysis. band 11 was correlating significantly with CO2 values in each of the months April (R2 = 0.217), May (R2 = 0.914) and June, (R2 = 0.934), because band 11 is closer to the 15-micron band of CO2. From the results, it was observed that band 10 can be used for calculating air temperature and band 11 can be used for estimation of greenhouse gases.  相似文献   
19.
ABSTRACT

The Upper Triassic Langjiexue Group, which lies immediately south of the Yarlung-Tsangpo Suture Zone in the Shannan area of southeastern Tibet, represents an important part of the Tethyan Himalayan Sequence (THS). Its provenance and palaeogeography have been the subject of debate. We present new data on petrographic composition, whole-rock geochemistry, and detrital zircon U–Pb geochronology to constrain the provenance of the Langjiexue Group. The dominance of quartz grains and felsic volcanic lithic fragments suggests that the sandstones are litho-quartzose. The trace element geochemical signatures (V–Ni–Th*10, Co/Th–La/Sc, Eu/Eu*–Th/Sc) suggest derivation from felsic igneous sources. The detrital zircon age spectra display three major peaks: a Meso-to-Neoproterozoic peak (1200–900 Ma, 7–18%), a Neoproterozoic-to-Late Cambrian peak (750–500 Ma, 32–65%), and a Late Carboniferous-to-Late Triassic peak (300–200 Ma, 11–33%). The maximum depositional age of early Carnian (236–235 Ma) is obtained by calculating weighted average ages of the youngest zircons (≤250 Ma). The youngest age cluster (300–200 Ma) is incompatible with sources from neighbouring terranes, including the South Qiangtang terrane, Lhasa terrane, THS, and Higher Himalayan Crystalline. Correlations of the Permian–Triassic zircons with those of time-equivalent strata in northwest Australia, west Burma, and the Banda Arc unveil a potential connection to the Tasmanides along the convergent margin of eastern Australia. The New England Orogen (300–230 Ma) could have supplied the Langjiexue Group with magmatic materials via continent-scale drainage systems or a submarine fan complex. This scenario provides a new perspective into the transport of detritus from distal orogens to sedimentary basins thousands of kilometres away.  相似文献   
20.
Progressive Early Silurian low‐pressure greenschist to granulite facies regional metamorphism of Ordovician flysch at Cooma, southeastern Australia, had different effects on detrital zircon and monazite and their U–Pb isotopic systems. Monazite began to dissolve at lower amphibolite facies, virtually disappearing by upper amphibolite facies, above which it began to regrow, becoming most coarsely grained in migmatite leucosome and the anatectic Cooma Granodiorite. Detrital monazite U–Pb ages survived through mid‐amphibolite facies, but not to higher grade. Monazite in the migmatite and granodiorite records only metamorphism and granite genesis at 432.8 ± 3.5 Ma. Detrital zircon was unaffected by metamorphism until the inception of partial melting, when platelets of new zircon precipitated in preferred orientations on the surface of the grains. These amalgamated to wholly enclose the grains in new growth, characterised by the development of {211} crystal faces, in the migmatite and granodiorite. New growth, although maximum in the leucosome, was best dated in the granodiorite at 435.2 ± 6.3 Ma. The combined best estimate for the age of metamorphism and granite genesis is 433.4 ± 3.1 Ma. Detrital zircon U–Pb ages were preserved unmodified throughout metamorphism and magma genesis and indicate derivation of the Cooma Granodiorite from Lower Palaeozoic source rocks with the same protolith as the Ordovician sediments, not Precambrian basement. Cooling of the metamorphic complex was relatively slow (average ~12°C/106y from ~730 to ~170°C), more consistent with the unroofing of a regional thermal high than cooling of an igneous intrusion. The ages of detrital zircon and monazite from the Ordovician flysch (dominantly composite populations 600–500 Ma and 1.2–0.9 Ga old) indicate its derivation from a source remote from the Australian craton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号