首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   650篇
  免费   8篇
  国内免费   9篇
大气科学   7篇
地球物理   11篇
地质学   34篇
海洋学   1篇
天文学   612篇
综合类   1篇
自然地理   1篇
  2024年   1篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2014年   9篇
  2013年   9篇
  2012年   13篇
  2011年   20篇
  2010年   8篇
  2009年   65篇
  2008年   64篇
  2007年   73篇
  2006年   58篇
  2005年   57篇
  2004年   49篇
  2003年   31篇
  2002年   38篇
  2001年   23篇
  2000年   24篇
  1999年   22篇
  1998年   11篇
  1997年   2篇
  1996年   5篇
  1995年   42篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
排序方式: 共有667条查询结果,搜索用时 15 毫秒
101.
It is generally believed that the complexity and variability of the light curves of gamma-ray bursts (GRBs) are caused by the internal shocks, which would occur when a rapid shell catches up a slower one and collides with it. The electrons in the shock layer are heated by the shocks and radiate via the mechanisms of synchrotron radiation and inverse Compton scattering. Based on relativistic kinematics, a relation between the photon number of the emission from the rapidly moving shock layer and the number of the photons received by an observer is derived. Then, employing the angular spreading of the internal shock emission, the curve equation and profile of a single pulse are obtained, and the shape is typically in the shape of a fast rise and exponential decline. Furthermore, by using the model of the successive collisions of multiple shells under the condition of reasonable parameters, the observed light curves are fitted with a rather good effect. Therefore, by this means, more different types of light curves of GRBs can be explained.  相似文献   
102.
103.
104.
105.
Black holes are extremely dense and compact objects from which light cannot escape. There is an overall consensus that black holes exist and many astronomical objects are identified with black holes. White holes were understood as the exact time reversal of black holes, therefore they should continuously throw away material. It is accepted, however, that a persistent ejection of mass leads to gravitational pressure, the formation of a black hole and thus to the “death of while holes”. So far, no astronomical source has been successfully tagged a white hole. The only known white hole is the Big Bang which was instantaneous rather than continuous or long-lasting. We thus suggest that the emergence of a white hole, which we name a ‘Small Bang’, is spontaneous - all the matter is ejected at a single pulse. Thus, unlike black holes, white holes cannot be continuously observed rather their effect can only be detected around the event itself. γ-ray bursts are the most energetic explosions in the universe. Long γ-ray bursts were connected with supernova eruptions. There is a new group of γ-ray bursts, which are relatively close to Earth, but surprisingly lack any supernova emission. We propose identifying these bursts with white holes. White holes seem like the best explanation of γ-ray bursts that appear in voids. We also predict the detection of rare gigantic γ-ray bursts with energies much higher than typically observed.  相似文献   
106.
太阳米波和分米波的射电观测是对太阳爆发过程中耀斑和日冕物质抛射现象研究的重要观测手段。米波和分米波的太阳射电暴以相干等离子体辐射为主导,表现出在时域和频域的多样性和复杂性。其中Ⅱ型射电暴是激波在日冕中运动引起电磁波辐射的结果。在Ⅱ型射电暴方面,首先对米波Ⅱ型射电暴的激波起源问题和米波Ⅱ型射电暴与行星际Ⅱ型射电暴的关系问题进行了讨论;其次,结合Lin-Forbes太阳爆发理论模型对Ⅱ型射电暴的开始时间和起始频率进行讨论:最后,对Ⅱ型射电暴信号中包含的两种射电精细结构,Herringbone结构(即鱼骨结构)和与激波相关的Ⅲ型射电暴也分别进行了讨论。Ⅲ型射电暴是高能电子束在日冕中运动产生电磁波辐射的结果。在Ⅲ型射电暴方面,首先介绍了利用Ⅲ型射电暴对日冕磁场位形和等离子体密度进行研究的具体方法;其次,对利用Ⅲ型射电暴测量日冕温度的最新理论进行介绍;最后,对Ⅲ型射电暴和Ⅱ型射电暴的时间关系、Ⅲ型射电暴和粒子加速以及Ⅲ型射电暴信号中包含的射电精细结构(例如斑马纹、纤维爆发及尖峰辐射)等问题进行讨论并介绍有关的最新研究进展。  相似文献   
107.
Known classes of radio wavelength transients range from the nearby stellar flares and radio pulsars to the distant Universe γ‐ray burst afterglows. Hypothesized classes of radio transients include analogs of known objects, e.g., extrasolar planets emitting Jovian‐like radio bursts and giant‐pulse emitting pulsars in other galaxies, to the exotic, prompt emission from γ‐ray bursts, evaporating black holes, and transmitters from other civilizations. A number of instruments and facilities are either under construction or in early observational stages and are slated to become available in the next few years. With a combination of wide fields of view and wavelength agility, the detection and study of radio transients will improve immensely. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
108.
We calculate the very high-energy (sub-GeV to TeV) inverse Compton emission of GRB afterglows. We argue that this emission provides a powerful test of the currently accepted afterglow model. We focus on two processes: synchrotron self-Compton emission within the afterglow blast wave, and external inverse Compton emission which occurs when flare photons (produced by an internal process) pass through the blast wave. We show that if our current interpretations of the Swift X-ray telescope (XRT) data are correct, there should be a canonical high-energy afterglow emission light curve. Our predictions can be tested with high-energy observatories such as GLAST , Whipple, HESS and MAGIC. Under favourable conditions we expect afterglow detections in all these detectors.  相似文献   
109.
Gamma-ray burst (GRB) afterglow observations in the Swift era have a perceived lack of achromatic jet breaks compared to the BeppoSAX or pre- Swift era. Specifically, relatively few breaks, consistent with jet breaks, are observed in the X-ray light curves of these bursts. If these breaks are truly missing, it has serious consequences on the interpretation of GRB jet collimation and energy requirements, and the use of GRBs as cosmological tools. Here, we address the issue of X-ray breaks that are possibly 'hidden' and hence the light curves are misinterpreted as being single power laws. We do so by synthesizing X-ray telescope (XRT) light curves and fitting both single and broken power laws, and comparing the relative goodness of each fit via Monte Carlo analysis. Even with the well-sampled light curves of the Swift era, these breaks may be left misidentified, hence caution is required when making definite statements on the absence of achromatic breaks.  相似文献   
110.
We investigate a scenario of photon scattering by electrons within a relativistic outflow. The outflow is composed of discrete shells with different speeds. One shell emits radiation for a short duration. Some of this radiation is scattered by the shell(s) behind. We calculate in a simple two-shell model the observed scattered flux density as a function of the observed primary flux density, the normalized arrival time delay between the two emission components, the Lorentz factor ratio of the two shells and the scattering shell's optical depth. Thomson scattering in a cold shell and inverse Compton scattering in a hot shell are both considered. The results of our calculations are applied to the gamma-ray bursts and the afterglows. We find that the scattered flux from a cold slower shell is small and likely to be detected only for those bursts with very weak afterglows. A hot scattering shell could give rise to a scattered emission as bright as the X-ray shallow decay component detected in many bursts, on a condition that the isotropically equivalent total energy carried by the hot electrons is large, ∼1052–1056 erg. The scattered emission from a faster shell could appear as a late short γ-ray/MeV flash or become part of the prompt emission depending on the delay of the ejection of the shell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号