首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12445篇
  免费   1222篇
  国内免费   1484篇
测绘学   2489篇
大气科学   755篇
地球物理   1488篇
地质学   3556篇
海洋学   915篇
天文学   4791篇
综合类   566篇
自然地理   591篇
  2024年   49篇
  2023年   116篇
  2022年   330篇
  2021年   356篇
  2020年   381篇
  2019年   398篇
  2018年   287篇
  2017年   439篇
  2016年   444篇
  2015年   481篇
  2014年   575篇
  2013年   599篇
  2012年   631篇
  2011年   584篇
  2010年   519篇
  2009年   837篇
  2008年   847篇
  2007年   897篇
  2006年   878篇
  2005年   857篇
  2004年   738篇
  2003年   675篇
  2002年   680篇
  2001年   474篇
  2000年   429篇
  1999年   427篇
  1998年   447篇
  1997年   160篇
  1996年   87篇
  1995年   109篇
  1994年   82篇
  1993年   72篇
  1992年   56篇
  1991年   41篇
  1990年   43篇
  1989年   17篇
  1988年   26篇
  1987年   11篇
  1986年   18篇
  1985年   10篇
  1984年   5篇
  1983年   7篇
  1982年   5篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1954年   3篇
  1897年   2篇
  1880年   2篇
  1877年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
711.
山西潞安集团司马矿区东高西低,西部延至长治盆地,矿区水系发育。主采3#煤层埋藏较浅,层位稳定。新生界不整合于下伏基岩之上,厚度变化较大,属典型的薄硬岩煤矿区。为准确提供矿区煤炭开采上限的地质依据,采用了综合勘探技术,其中利用三维地震勘探技术追踪新生界底面反射波及第四系"天窗"位置,利用直流电法与瞬变电磁法提供电性分层,并对其解释结果进行相互印证。勘探实例表明,三维地震勘探、电法勘探与钻探的综合运用不仅可解决薄硬岩煤矿区新生界厚度、含水层富水性及第四系缺失等问题,还可提供新生界含水层与基岩含水层之间的水力联系、制约因素等资料。  相似文献   
712.
根据山西宁武煤田某煤矿2#煤层采掘及钻孔揭露情况,发现该井田中部和南部存在古河流冲刷带。通过对比基于优选的4个地震属性的四元一次、四元二次多项式回归模型与BP神经网络预测模型,决定将BP人工神经网络模型预测煤层厚度数据应用于整个测区古河流冲刷带的预判工作。首先利用GeoFrame系统和Landmark公司Poststack模块,提取2#煤层反射波的各类沿层切片,分析并圈定出2#煤层古河流冲刷带的大致范围,在此基础上,利用垂直时间剖面中2#煤层反射波的各种波形特征,进一步判别2#煤层古河流冲刷带解释的可靠性,然后结合BP神经网络预测模型获得的2#煤层厚度变化趋势图,最终解释出2#煤层古河流冲刷带范围:勘探区内2#煤层厚度变化范围0~5.3m,根据其煤层厚度变化趋势,将全区划分出一大二小3个古河流冲刷带。  相似文献   
713.
邹佑学  王睿  张建民 《岩土力学》2019,40(6):2443-2455
采用砂土液化大变形弹塑性本构模型分析可液化砂土,采用模量随应力与应变变化的等效非线性模型增量形式分析碎石桩,应用FLAC3D有限差分软件对地震动力作用下可液化场地碎石桩复合地基进行三维动力响应分析。模拟分析了在地震作用下碎石桩刚度效应和排水效应对加固处理可液化场地的抗液化效果,从初始小变形到液化后大变形的变形发展,超静孔压累积与消散,及桩与土的变形与应力分配变化等。结果表明,所用模型与方法可合理描述可液化场地碎石桩复合地基在地震作用下场地的动力响应特性和抗液化效果;在地震作用下可液化场地中桩周土体与碎石桩体的竖向应力与水平向剪切应力向碎石桩体集中,竖向有效应力比可降至约1/6~1/3;桩周土体与桩体为非协调变形,剪应变比可达7~10;碎石桩抗液化影响范围约为2.5~3倍桩径,对超过3.5倍桩径范围影响较小;碎石桩与砂土渗透系数比大于100时对降低砂土中超静孔隙水压影响明显;碎石桩对场地的加密效应可显著降低超静孔隙水压力,而碎石桩刚度则对超静孔隙水压力变动影响较小,但有助于减低地面加速度响应峰值。  相似文献   
714.
Numerous samples taken from one core at the Beijing plain were utilized to characterize the paleoclimatic configuration of the study area and its possible relation to global control since the last interglaciation. We presented here a detailed grain-size record for the full length of Late Pleistocene, along with the optical simulated luminescence (OSL) dating. Our findings revealed that Late Pleistocene of the study area started approximately at 110 ka B.P. represented by the thick sediments of 31 m in Changping depression. Four sedimentary cycles were outlined in the core during Late Pleistocene, corresponding to marine isotope stage (MIS) 5 to 2. Controlled by regional geology and global climatic setting, eight paleoclimatic periods were identified simultaneously in the study area on the time scale of 104 year, with the warm and moist climate being found at 110 — 96, 92 — 76, 67 — 56, and 28 — 18 ka B.P.. The climatic instabilities on a millennial scale in Late Pleistocene were characterized largely by the occurrence of 6 strong Heinrich events shown by comparatively coarse groups. These variations correlate well with those documented in the GRIP Greenland and in the Northern Atlantic Ocean, though more complex features may exist on the long time scale.  相似文献   
715.
本文在总结全球地幔橄榄岩岩石学和地球化学特征的基础上,首次提出了一个用于判别HP-UHP变质带中变质橄榄岩原岩及其成因类型的判别图解.该图主要由镁铁总量MgO+(%)和一个参数m+f/si比值构成.另用Al2O3和CaO分别与MgO+(%)制成两个辅助图解,以示方辉橄榄岩和二辉橄榄岩之间在Al2O3和CaO含量上的分界.通过原岩判别结果和研究表明,PP3孔和PP1孔两者在变质组合、原岩成因类型、地球化学和变质条件方面存在一系列的重大差异.分别代表来自两种极端的地球化学类型和两种不同大地构造环境的UHP变质体.PP3钻孔以Ol+Gt+Cpx+Opx+Sp为变质矿物共生组合的含石榴石纯橄岩,其原岩系来自地幔残余成因的方辉橄榄岩遭受UHP变质作用的产物,它以成分高度均一,富Mg(Mg'=92),极端亏损不相容元素REE(∑REE<1×10-6可称为超亏损型)为特征.在变质相中仍保留原岩的残余矿物铬尖晶石(Sp),其成分显示蛇绿岩地幔橄榄岩的成分趋势.并出现以Gt和Sp共存相为特征的变质相.据实验结果(klemme,2004)表明该共存相的稳定域的P-T条件Cr-Sp可达7Gpa,T1400℃,即形成于200km的地幔深度.综合研究显示该孔变质橄榄岩原岩(方辉橄榄岩)具有大洋岩石圈地幔残余成因的某些印记,而不是同深度原生地幔岩相转变的产物.PP1孔变质橄榄岩是由无水矿物相(Ol+Opx+Cpx+Gt)+含水矿物相(Phl±Chu)组成的石榴石橄榄岩杂岩,其原岩来自两种不同成因的超镁铁岩系列:一为具地幔成因的方辉橄榄岩-二辉橄榄岩系列(可能相当于地幔楔中的Al型橄榄岩),另一部分(少数)来自具岩浆成因的超镁铁岩系列(纯橄岩-异剥橄榄岩-辉石岩组合,可能相当于A2型橄榄岩).该套变质橄榄岩,以成分高度不均一,极端富集REE(∑REE平均>20×10-6可称为超富集型)和大离子亲石元素(K、Ba、Rb)为特征.这种异常现象并不反映其原岩原有的地球化学特征,它可能是由于在俯冲过程中受到陆壳物质的污染,或壳-幔相互作用所致.据该孔变质相中缺乏Sp相,而以Gt为标志的变质相的事实,推断其形成的压力条件应>7Gpa, 即形成的深度应大于200km.上述研究表明在苏鲁UHP变质带中,不仅有来自大陆地幔楔中的地幔残余的UHP变质体,而且首次提出有可能来自大陆俯冲前锋具大洋岩石圈地幔性质的(蛇绿岩型地幔残片)变质体存在,这对揭示该区UHP变质带的形成和演化过程提供了新的信息.  相似文献   
716.
中国南阳伏牛山世界地质公园地质灾害评价   总被引:1,自引:0,他引:1  
中国南阳伏牛山世界地质公园位于豫西南山区。地貌类型以中、低山为主,地表多出露变质岩及侵入岩,岩体风化强烈,多赋存基岩裂隙水,地质构造发育,人类工程活动强烈,园区地质环境条件复杂。通过野外调查及评价,园区处于地质灾害高易发区,主要地质灾害有崩塌、滑坡和泥石流。针对地质公园这一特色旅游,提出地质灾害防治对策,保障当地旅游经济可持续发展。  相似文献   
717.
超临界流体中MoO3与WO3溶解度实验探讨   总被引:1,自引:1,他引:1  
超临界地质流体以其独特的性质对金属成矿元素具有超强的萃取、层析和搬运能力,在热液矿床成矿机制研究中对揭示成矿物质的源、流和汇起着特殊和重要作用。本利用分析纯H2MoO3在高温下脱水制备了MoO3(白色斜方晶系),在冷封式高压釜中实验测定了417℃超临界条件下,MoO3在纯水中的溶解度分别为7.3(29MPa)、14.2(45MPa)、21.6(55MPa)、27.7(78MPa)、32.5(100MPa)、和34.2(150MPa)mmol/1,热液中钼的存在形式为H2M004。依据前人的实验方案,补充测定了WO3在4.0%NaCl水溶液中于450℃条件下的溶解度,其值分别为27.51(50MPa)和30.52(100MPa)mmol/l,结合前人研究结果发现,MoO3、WO3的溶解度在临界区域内具有超临界现象,在超临界条件下其溶解度与石英的超临界溶解度行为基本相似,表现为溶解度随体系温度和压力的升高而增大,这对揭示岩浆热液型和石英脉型钨、钼矿床的形成机制具有重要指导作用。  相似文献   
718.
用FLAC-3D分析呷爬滑坡的变形特征   总被引:5,自引:3,他引:5  
简单地介绍了边坡岩体变形研究的现状和FLAC-3D软件,利用FLAC-3D软件对天然状态下和蓄水条件下呷爬滑坡的变形进行数值模拟研究。根据模拟所得的计算结果,从滑坡主剖面上特征点的位移值和位移矢量图分析,得出滑坡体在天然状态下和不同蓄水高程下的变形特征,确定滑坡变形特征与滑坡稳定性之间的联系。从而为呷爬滑坡的稳定性评价提供必要的理论依据。  相似文献   
719.
干旱半干旱地区农田土壤NO3-N深层积累及其影响因素   总被引:7,自引:0,他引:7  
以长期试验资料为基础,着重分析了干旱半干旱地区农田系统中施肥、作物、降水、耕作措施以及土壤类型和特性对产生土壤NO3-N深层积累的影响.分析发现,氮肥的过量施用和400~800 mm降水量偏低是导致干旱半干旱地区土壤NO3-N积累在100~300 cm土层的主要因素.随着氮肥用量的增加,NO3-N深层积累显著增加;氮磷配施有助于降低其积累量.不同作物对氮素的吸收利用效率也是影响NO3-N深层积累的因素,作物之间的轮作方式会有效降低NO3-N深层积累;休闲期种植合理植物可有效降低NO3-N深层积累.NO3-N深层积累主要产生在质地较重的土壤上,带正电荷粘土矿物对NO3-N吸附是导致热带土壤中NO3-N积累的主要因素.深入研究深层积累NO3-N的生物有效性、迁移变化机理、与作物根系之间的关系以及对土壤性状和环境的影响具有重要意义.  相似文献   
720.
矿山工程裂隙破碎带的三维地震模式识别原理及应用效果   总被引:1,自引:0,他引:1  
本文从时间域、频率域、三维空间域介绍了矿山工程裂隙破碎带主要的地震运动学、动力学属性参数,包括相对振幅、波峰相位时间、相似系数、主频带能量、三维空间时间梯度和相干系数等,提出了矿山工程裂隙破碎带三维地震属性的去噪平滑、归一化、相关分析、特征变换的处理方法以及裂隙破碎带的模式识别原理与方法,并用实例说明了该方法的应用效果。结果表明:模式识别法对于解释矿山工程的裂隙破碎带是有效的,并具有广阔的应用前景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号