首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   31篇
测绘学   2篇
地球物理   10篇
海洋学   1篇
天文学   287篇
综合类   1篇
  2024年   5篇
  2023年   5篇
  2022年   7篇
  2021年   5篇
  2020年   5篇
  2019年   5篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   8篇
  2014年   8篇
  2013年   7篇
  2012年   20篇
  2011年   10篇
  2010年   17篇
  2009年   19篇
  2008年   22篇
  2007年   20篇
  2006年   29篇
  2005年   22篇
  2004年   13篇
  2003年   17篇
  2002年   7篇
  2001年   8篇
  2000年   6篇
  1999年   7篇
  1998年   7篇
  1997年   1篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1984年   1篇
排序方式: 共有301条查询结果,搜索用时 15 毫秒
171.
射电望远镜天线结构设计和观测任务的正常进行都需要台址风场信息.随着望远镜性能要求的提高,天线结构设计越来越复杂,风载荷对天线观测时造成的指向影响也越发明显,如何在设计时保证结构刚度和强度,在观测时提高有效观测时间,都需要准确的风场数据.由于传统台址测风塔布置方法无法对测风塔拟设点的可靠性做出定量化评估,因此提出一种基于数值模拟优化测风塔位置的方法.数值模拟基于规范参数设置边界条件,与实测数据比较,整体趋势吻合,满足精度需求.对试验台址设置了4个测风塔位置,经分析P2点与天线位置的风速均方根误差值(root-mean-square error, RMSE)最小,测得的数据更能表征天线区域的风场特性.  相似文献   
172.
付玉  袁沭  金振宇  刘忠 《天文学报》2023,64(1):8-84
望远镜的仪器偏振是影响太阳磁场测量的重要因素,为了获得精确的太阳磁场信息,对大型太阳望远镜光学系统进行偏振优化设计非常必要.针对8 m中国巨型太阳望远镜(Chinese Giant Solar Telescope, CGST)的偏振设计需求,提出了基于四镜偏振补偿结构的望远镜折轴光学系统设计方案.基于偏振光线追迹方法,分析了该方案仪器偏振在望远镜光瞳和视场上的分布特性以及视场分布特性随望远镜运动和波长的变化.结果表明,在HeI 1.083μm和FeI 1.565μm磁敏谱线所在的近红外波段, CGST仪器偏振满足2×10-4测量精度要求的“无偏振视场”为0.91′,而在可见光波段该“无偏振视场”为0.5′.  相似文献   
173.
174.
The NST (New Solar Telescope), a 1.6 m clear aperture, off‐axis telescope, is in its commissioning phase at Big Bear Solar Observatory (BBSO). It will be the most capable, largest aperture solar telescope in the US until the 4 m ATST (Advanced Technology Solar Telescope) comes on‐line late in the next decade. The NST will be outfitted with state‐of‐the‐art scientific instruments at the Nasmyth focus on the telescope floor and in the Coudé Lab beneath the telescope. At the Nasmyth focus, several filtergraphs already in routine operation have offered high spatial resolution photometry in TiO 706 nm, Hα 656 nm, G‐band 430 nm and the near infrared (NIR), with the aid of a correlation tracker and image reconstruction system. Also, a Cryogenic Infrared Spectrograph (CYRA) is being developed to supply high signal‐to‐noise‐ratio spectrometry and polarimetry spanning 1.0 to 5.0 μm. The Coudé Lab instrumentation will include Adaptive Optics (AO), InfraRed Imaging Magnetograph (IRIM), Visible Imaging Magnetograph (VIM), and Fast Imaging Solar Spectrograph (FISS). A 308 sub‐aperture (349‐actuator deformable mirror) AO system will enable nearly diffraction limited observations over the NST's principal operating wavelengths from 0.4 μm through 1.7 μm. IRIM and VIM are Fabry‐Pérot based narrow‐band tunable filters, which provide high resolution two‐dimensional spectroscopic and polarimetric imaging in the NIR and visible respectively. FISS is a collaboration between BBSO and Seoul National University focussing on chromosphere dynamics. This paper reports the up‐to‐date progress on these instruments including an overview of each instrument and details of the current state of design, integration, calibration and setup/testing on the NST (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
175.
We derive a generalized van Cittert-Zernike (vC-Z) theorem for radio astronomy that is valid for partially polarized sources over an arbitrarily wide field of view (FoV). The classical vC-Z theorem is the theoretical foundation of radio astronomical interferometry, and its application is the basis of interferometric imaging. Existing generalized vC-Z theorems in radio astronomy assume, however, either paraxiality (narrow FoV) or scalar (unpolarized) sources. Our theorem uses neither of these assumptions, which are seldom fulfiled in practice in radio astronomy, and treats the full electromagnetic field. To handle wide, partially polarized fields, we extend the two-dimensional (2D) electric field (Jones vector) formalism of the standard 'Measurement Equation' (ME) of radio astronomical interferometry to the full three-dimensional (3D) formalism developed in optical coherence theory. The resulting vC-Z theorem enables full-sky imaging in a single telescope pointing, and imaging based not only on standard dual-polarized interferometers (that measure 2D electric fields) but also electric tripoles and electromagnetic vector-sensor interferometers. We show that the standard 2D ME is easily obtained from our formalism in the case of dual-polarized antenna element interferometers. We also exploit an extended 2D ME to determine that dual-polarized interferometers can have polarimetric aberrations at the edges of a wide FoV. Our vC-Z theorem is particularly relevant to proposed, and recently developed, wide FoV interferometers such as Low Frequency Array (LOFAR) and Square Kilometer Array (SKA), for which direction-dependent effects will be important.  相似文献   
176.
The installation and operation of a telescope in Antarctica represent particular challenges, in particular the requirement to operate at extremely cold temperatures, to cope with rapid temperature fluctuations and to prevent frosting. Heating of electronic subsystems is a necessity, but solutions must be found to avoid the turbulence induced by temperature fluctuations on the optical paths. ASTEP 400 is a 40cm Newton telescope installed at the Concordia station, Dome C since 2010 for photometric observations of fields of stars and their exoplanets. While the telescope is designed to spread star light on several pixels to maximize photometric stability, we show that it is nonetheless sensitive to the extreme variations of the seeing at the ground level (between about 0′′.1 and 5′′) and to temperature fluctuations between –30°C and –80 °C. We analyze both day‐time and night‐time observations and obtain the magnitude of the seeing caused by the mirrors, dome and camera. The most important effect arises from the heating of the primary mirror which gives rise to a mirror seeing of 0′′.23 K–1. We propose solutions to mitigate these effects. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
177.
Networks are becoming a key element in most current and all future, telescope and observatory projects. The ability to easily and efficiently pass observation data, alert data and instrumentation requests between distributed systems could enable science as never before. However, any effective large scale or meta‐network of astronomical resources will require a common communication format or development resources will have to be continuously dedicated to creating interpreters. The necessary elements of any astronomy communication can be easily identified, efficiently described and rigidly formatted so that both robotic and human operations can use the same data. In this paper we will explore the current state of notification, what notification requirements are essential to create a successful standard and present a standard now under development by the International Virtual Observatory Alliance (IVOA), called the VOEvent. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
178.
Robonet‐1.0     
Robonet‐1.0 is a prototype network of 2m robotic telescopes spread out around the world, consisting of three 2 metre telescopes. In this paper we present some of the science done with the network and how we use eSTAR and HTN technologies to perform observing programmes in an efficient manner. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
179.
环焦天线具有特殊的电磁特性和应用领域.对环焦天线的口径面相位误差进行了理论和仿真分析,推导了馈源和副面位置偏差引起的相位误差、主副面之间的补偿关系以及全息测量中天线转动引起的光程差.研究结果将对环焦天线的精确面形测量和补偿提供理论依据和参考.  相似文献   
180.
The technique of gravitational microlensing is currently unique in its ability to provide a sample of terrestrial exoplanets around both Galactic disk and bulge stars, allowing to measure their abundance and determine their distribution with respect to mass and orbital separation. Thus, valuable information for testing models of planet formation and orbital migration is gathered, constituting an important piece in the puzzle for the existence of life forms throughout the Universe. In order to achieve these goals in reasonable time, a well‐coordinated effort involving a network of either 2m or 4×1m telescopes at each site is required. It could lead to the first detection of an Earth‐mass planet outside the Solar system, and even planets less massive than Earth could be discovered. From April 2008, ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search) is planned to provide a platform for a three‐step strategy of survey, follow‐up, and anomaly monitoring. As an expert system embedded in eSTAR (e‐Science Telescopes for Astronomical Research), ARTEMiS will give advice for follow‐up based on a priority algorithm that selects targets to be observed in order to maximize the expected number of planet detections, and will also alert on deviations from ordinary microlensing light curves by means of the SIGNALMEN anomaly detector. While the use of the VOEvent (Virtual Observatory Event) protocol allows a direct interaction with the telescopes that are part of the HTN (Heterogeneous Telescope Networks) consortium, additional interfaces provide means of communication with all existing microlensing campaigns that rely on human observers. The success of discovering a planet by microlensing critically depends on the availability of a telescope in a suitable location at the right time, which can mean within 10 min. To encourage follow‐up observations, microlensing campaigns are therefore releasing photometric data in real time. On ongoing planetary anomalies, world‐wide efforts are being undertaken to make sure that sufficient data are obtained, since there is no second chance. Real‐time modelling offers the opportunity of live discovery of extra‐solar planets, thereby providing “Science live to your home”. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号