首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1501篇
  免费   114篇
  国内免费   107篇
测绘学   134篇
大气科学   45篇
地球物理   305篇
地质学   256篇
海洋学   42篇
天文学   745篇
综合类   73篇
自然地理   122篇
  2024年   6篇
  2023年   6篇
  2022年   16篇
  2021年   17篇
  2020年   15篇
  2019年   24篇
  2018年   15篇
  2017年   31篇
  2016年   30篇
  2015年   30篇
  2014年   33篇
  2013年   64篇
  2012年   30篇
  2011年   36篇
  2010年   45篇
  2009年   84篇
  2008年   93篇
  2007年   157篇
  2006年   93篇
  2005年   78篇
  2004年   85篇
  2003年   77篇
  2002年   92篇
  2001年   59篇
  2000年   76篇
  1999年   57篇
  1998年   55篇
  1997年   79篇
  1996年   38篇
  1995年   39篇
  1994年   35篇
  1993年   26篇
  1992年   20篇
  1991年   12篇
  1990年   15篇
  1989年   10篇
  1988年   18篇
  1987年   15篇
  1986年   5篇
  1985年   3篇
  1982年   2篇
  1981年   1篇
排序方式: 共有1722条查询结果,搜索用时 15 毫秒
901.
Taking advantage of the very precise de Jager et al. optical white dwarf orbit and spin ephemerides; ASCA , XMM–Newton and Chandra X-ray observations spread over 10 yr; and a cumulative 27-yr baseline, we have found that in recent years the white dwarf in AE Aqr is spinning down at a rate that is slightly faster than predicted by the de Jager et al. spin ephemeris. At the present time, the observed period evolution is consistent with either a cubic term in the spin ephemeris with     , which is inconsistent in sign and magnitude with magnetic dipole radiation losses, or an additional quadratic term with     , which is consistent with a modest increase in the accretion torques spinning down the white dwarf. Regular monitoring, in the optical, ultraviolet and/or X-rays, is required to track the evolution of the spin period of the white dwarf in AE Aqr.  相似文献   
902.
903.
In this paper, we present a new method for measuring the surface differential rotation of cool stars with rotation periods of a few days, for which the sparse phase coverage achievable from single-site observations generally prevents the use of more conventional techniques. The basic idea underlying this new analysis is to obtain the surface differential rotation pattern that minimizes the information content of the reconstructed Doppler image through a simultaneous fit of all available data.
Simulations demonstrate that the performance of this new method in the case of cool stars is satisfactory for a variety of observing strategies. Differential rotation parameters can be recovered reliably as long as the total data set spans at least 4 per cent of the time for the equator to lap the pole by approximately one complete cycle. We find in particular that these results hold for potentially complex spot distributions (as long as they include a mixture of low- and high-latitude features), and for various stellar inclination angles and rotation velocities. Such measurements can be obtained from either unpolarized or polarized data sets, provided their signal-to-noise ratio is larger than approximately 500 and 5000 per 2 km s−1 spectral bin, respectively.
This method should therefore be very useful for investigating differential rotation in a much larger sample of objects than what has been possible up to now, and should hence give us the opportunity of studying how differential rotation reacts to various phenomena operating in stellar convective zones, such as tidal effects or dynamo magnetic field generation.  相似文献   
904.
恒星的自转 ,是恒星结构和演化理论的难点。近年来有许多观测事实 ,特别是早型大质量星的观测事实 ,预示恒星的自转效应可能引起恒星内部的物质向外转移 ,造成恒星表面一些元素丰度超丰 ,并且对恒星结构和演化产生重要影响 ,因此 ,恒星的自转问题受到了越来越多的关注。考虑自转效应后 ,恒星结构和演化模型将是二维模型 ,本文综述了诸多作者如何将二维的恒星结构和演化模型简化为一维模型。作者在研究了以上作者的简化方法后 ,提出了一种比较简单的新方法。这种方法基于如下假设 :假设在等势面上的温度 ,密度 ,压强 ,光度 ,化学组成和角速度等物理和化学量近似于均匀分布 ,并且这些量与等价球面上的量相同。 (等价球面是假想的球面 ,它包围的体积与等势面包围的体积相等。)我们在等价球面上推出新的转动恒星结构和演化方程 ,构造出新的演化模型。这个模型与不考虑转动效应的演化模型相比 ,有以下变化 :流体静力学平衡方程变化 ;辐射温度梯度变化 ,并引起对流判据变化 ;星风物质损失和角动量损失增大。作为转动恒星结构和演化模型的应用 ,我们研究了中 ,小质量星中心氦燃烧阶段在赫罗图中的演化轨迹发生来回摆动 (又称为蓝回绕 )的物理机制问题。有诸多作者曾经研究了可以影响蓝回绕的各种因素。但是不知  相似文献   
905.
We study the rotation of the sector structure of the solar magnetic field by using Stanford magnetographic observations from 1975 until 2000 and magnetic synoptic Hα-maps obtained from 1904 until 2000. The two independent series of observations yielded the same rotation periods of the two-sector (26.86 days) and four-sector (13.64 days) structures. We introduce a new index of the solar rotation, SSPM(t). The spectral power density of the sector structure of the magnetic field is shown to exhibit a 22-year cyclicity. The two-and four-sector structures of the magnetic field rotate faster at the maxima of even 11-year sunspot cycles. This phenomenon may be called the Gnevyshev-Ohl rule for the solar rotation. The 11-year sector-structure activity cycles are shown to lead the 11-year sunspot cycles (Wolf numbers) by 5.5 years. A 55-year component with the slowest rotation in the 18th cycle (1945–1955) was distinguished in the sector-structure rotation.  相似文献   
906.
The condition of minimum total dissipation is used to derive stationary rotation and azimuthal magnetic field distributions in the bulk of the solar convection zone with an upper boundary at which the relative radius is r/R=0.95. General equilibrium con figurations with symmetric and antisymmetric (about the equator) angular-velocity and field components are determined. The calculated rotation law matches the observed one in general parameters, but the decrease in angular velocity at high latitudes in theory is larger than that in observations. Besides, there are additional sharp variations in the rotation and field distributions in the theoretical curves near the generation zone of solar torsional waves. The possible cause of the latter discrepancy is discussed. The change in equilibrium distributions due to the presence of an inverse molecular-weight gradient at the base of the convection zone is also studied. This gradient is known to be produced by accelerated gravitational helium settling in the convection zone.  相似文献   
907.
We present the results of polarimetric and photometricobservations of split Comet C/2001 A2 (LINEAR), which wereobtained at the 70-cm telescope of the Astronomical Observatoryof Kharkiv National University between 30 June and 31 July 2001.The brightest fragment of the comet, nucleus B, was observed.Eight narrowband cometary filters in the continuum and in emissionbands and a wideband red filter have been used. The comet wasobserved through apertures of 88, 33, and 19 arcsec. Polarizationphase curves were obtained for the continuum and for the firsttime, for NH2(0, 7, 0) emission. The degree of polarization ofthe light scattered by the dust decreases with the increase ofaperture size. An important temporal variation of the polarizationwith a rotation of the polarization plane was observed at twophase angles (26.5° and 36.2°). Molecular column densities and production rates of CN, C2,C3, and NH2 species are calculated in the framework of theHaser model. A comparative analysis of the temporal variations ofthe visual magnitudes, gas and dust production rates, dust colorand polarization are presented.  相似文献   
908.
We performed high-resolution simulations of two stellar collisions relevant for stars in globular clusters. We considered one head-on collision and one off-axis collision between two 0.6-M main-sequence stars. We show that a resolution of about 100 000 particles is sufficient for most studies of the structure and evolution of blue stragglers. We demonstrate conclusively that collision products between main-sequence stars in globular clusters do not have surface convection zones larger than 0.004 M after the collision, nor do they develop convection zones during the 'pre-main-sequence' thermal relaxation phase of their post-collision evolution. Therefore, any mechanism which requires a surface convection zone (i.e. chemical mixing or angular momentum loss via a magnetic wind) cannot operate in these stars. We show that no disc of material surrounding the collision product is produced in off-axis collisions. The lack of both a convection zone and a disc proves a continuing problem for the angular momentum evolution of blue stragglers in globular clusters.  相似文献   
909.
David G. Schleicher 《Icarus》2007,190(2):406-422
We present results from multi-apparition narrowband photometry of Deep Impact target Comet 9P/Tempel 1. In support of the mission, we obtained data during monthly observing runs between March and September 2005, and these are combined with and compared to observations obtained during the 1983 and 1994 apparitions. A strong seasonal effect is seen, with peak production rates occurring 4-8 weeks before perihelion, with some variation evident among the different species. There is also evidence of a slight systematic shift towards a later time of peak production in 2005 as compared to 1983. Early in the apparition, the radial profile of the dust was much steeper than the canonical 1/ρ, but the slope became progressively smaller until very little departure from 1/ρ remained by late June, a change possibly associated with the general seasonal effects. Unexpectedly, an unprecedented large overall decrease in production rates has taken place since 1983, with water at only about 42% of the 1983 values, CN at about 53%, and dust, based on the proxy A(θ)fρ, at about 77%. Other gas species exhibited declines intermediate between that of CN and of the dust. The large differences in the amount of secular decline among all of the species implies compositional inhomogeneities among source regions on the surface of the nucleus, with one region progressively becoming less active over only a few orbits. While the simplest explanation would invoke either devolatilization or covering up of the ice, no other comet has shown such a rapid change in outgassing unless accompanied by a significant change in its orbit. We, therefore, hypothesize that a change in available solar radiation due to precession of the pole might instead be causing the progressive drop in cometary activity. Given the small obliquity of the rotation axis derived from the Deep Impact observations, and a presumed small rate of precession, the source region would need to be located near the pole to explain both the large secular and seasonal trends.  相似文献   
910.
In this paper, we have studied both the dynamical and the rotational evolution of an 81P/Wild 2-like comet under the effects of the outgassing-induced force and torque. The main aim is to study if it is possible to reproduce the non-gravitational orbital changes observed in this comet, and to establish the likely evolution of both orbital and rotational parameters. To perform this study, a simple thermophysical model has been used to estimate the torque acting on the nucleus. Once the torque is calculated, Euler equations are solved numerically considering a nucleus mass directly estimated from the changes in the orbital elements (as determined from astrometry). According to these simulations, when the water production rate and changes in orbital parameters for 1997, as well as observational rotational parameters for 2004 are imposed as constraints, the change in the orbital period of 81P/Wild 2, , will decrease so that to , which is similar to the actual tendency observed from 1988 up to 1997. This nearly constant decreasing can be explained as due to a slight drift of the spin axis orientation towards larger ecliptic longitudes. After studying the possible spin axis orientations proposed for 1997, simulations suggest that the spin obliquity and argument (I,Φ)=(56°,167°) is the most likely. As for rotational evolution, changes per orbit smaller than 10% of the actual spin velocity are probable, while the most likely value corresponds to a change between 2 and 7% of the spin velocity. Equally, net changes in the spin axis orientation of 4°-8° per orbit are highly expected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号