首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   12篇
  国内免费   1篇
测绘学   4篇
地球物理   5篇
地质学   4篇
海洋学   2篇
天文学   181篇
综合类   2篇
自然地理   8篇
  2023年   1篇
  2022年   6篇
  2021年   7篇
  2020年   3篇
  2019年   7篇
  2017年   1篇
  2016年   2篇
  2015年   14篇
  2014年   7篇
  2013年   9篇
  2012年   12篇
  2011年   5篇
  2010年   5篇
  2009年   10篇
  2008年   8篇
  2007年   9篇
  2006年   12篇
  2005年   12篇
  2004年   7篇
  2003年   11篇
  2002年   10篇
  2001年   7篇
  2000年   18篇
  1999年   2篇
  1998年   6篇
  1997年   1篇
  1996年   2篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
排序方式: 共有206条查询结果,搜索用时 359 毫秒
41.
We present a trend analysis of the ISO-SWS detector performance and a study of the space radiation effects on the SWS detectors. In particular, dark currents, dark current noise and detector responses have been checked as a function of time through the mission and as a function of time in arevolution. The results show that these parameters were stable during the mission in all bandsbut for band 3 (Si:As). Dark currents and responses were found to be higherin the first hours following the start of the science window,especially in band 2 (Si:Ga). We have studied the impacts of cosmic rays and radiation belt particles on the SWS detectors, as well as of the only large solar proton event on November 6, 1997,that occurred during the ISO mission (operated during solar minimum).The observed glitch rates in all SWS bands are found to be between 2 and4 times higher than the value predicted by the CREME96 model for the cosmic ray flux in the period considered. The bands that registered the highest glitch rates showed also a correlation with the electron fluxes measured on theGOES 9 spacecraft. From the distribution of glitchheights (voltage jumps in the detector signal), we have derived the deposited energy distributions of the particles hits. Our results lead to the conclusion that secondaryparticles produced in the shield and the detectors contributed at least as much as cosmic rays to the observed glitch rate. The effects on the detectors of the November 6, 1997 event, which caused that all observationsin a revolution were declared failed, are described in detail.  相似文献   
42.
在天文观测中,射频干扰会造成假谱,降低数据的可靠性和有效性.射频干扰消减旨在减少干扰信号对射电天文观测的影响,包含器件方面的技术革新和数据处理领域的方法研究.针对德令哈13.7 m望远镜接收机中频部分引入的射频干扰,通过优化中频器件的抗射频干扰能力,提高了接收机的整体抗射频干扰能力,以主动消除方法来减少射频干扰耦合到接收机内部.分析了接收机干扰的传输路径,提出了器件射频干扰的直接耦合系数和器件射频干扰的系统耦合系数的概念,为定位干扰敏感器件并量化干扰引入比重提供了基础.经过抗射频干扰优化后,接收机抗干扰能力改善30 dB左右,望远镜的天文观测效率提高10%以上.  相似文献   
43.
C. U. Keller 《Solar physics》1996,164(1-2):243-252
Recent instrumental developments in imaging polarimetry allow array detectors to reach a polarimetric sensitivity of 1 × 10–4 of the intensity. New instrumental effects appear at these levels of sensitivity and generate spurious polarization signals with amplitudes of up to 5 × 10–4. Here I discuss these effects and present methods to avoid them. Polarized spectra with an rms noise of 6 × 10–6 may then be obtained. Furthermore a method is brought to the reader's attention that allows polarization measurements at the 1 × 10–4 level with regular array detectors, e.g. in the near-infrared.  相似文献   
44.
Group delay fringe tracking using spectrally dispersed fringes is suitable for stabilizing the optical path difference in ground-based astronomical optical interferometers in low light level situations. We discuss the performance of group delay tracking algorithms when the effects of atmospheric dispersion, high-frequency atmospheric temporal phase variations, non-ideal path modulation, non-ideal spectral sampling, and the detection artifacts introduced by electron-multiplying CCDs are taken into account, and we present ways in which the tracking capability can be optimized in the presence of these effects.  相似文献   
45.
A new imaging balloon-borne telescope for hard X-rays in the energy range from 30 to 100 keV is described. The imaging capability is provided by the use of an extended URA-based coded-mask. With only one motor and suitable stop pins, we can rotate a carbon-fiber wheel with most of the mask elements attached to it by 180°, and a bar, which is also part of the mask pattern and is allowed to rotate freely over the wheel, by 90°; this combined rotation creates an antimask of the original mask, except for the central element. This is a novel and elegant manner of providing an antimask without additional weight and complex mechanical manipulations. We show that the use of antimasks is a very effective method of eliminating systematic variations in the background map over the position-sensitive detector area. The expected sensitivity of the instrument for the 30–100 keV range is of the order of 7 × 10-5 photons cm-2 s-1 keV-1, for an integration time of 104 seconds at a residual atmosphere of 3.5 g cm-2. This telescope will provide imaging observations of bright galactic hard X-ray sources with an angular resolution of 2° in a 10° by 10° FOV, which is defined by a collimator placed in front of the detector system. We are particularly interested in the galactic center region, where recent imaging results in X-rays have shown the presence of an interesting source field. Results of computer simulations of the imaging system are reported.  相似文献   
46.
MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes located in the Canary island of La Palma, Spain. During summer 2011 and 2012 it underwent a series of upgrades, involving the exchange of the MAGIC-I camera and its trigger system, as well as the upgrade of the readout system of both telescopes. We use observations of the Crab Nebula taken at low and medium zenith angles to assess the key performance parameters of the MAGIC stereo system. For low zenith angle observations, the standard trigger threshold of the MAGIC telescopes is ∼ 50  GeV. The integral sensitivity for point-like sources with Crab Nebula-like spectrum above 220 GeV is (0.66 ± 0.03)% of Crab Nebula flux in 50 h of observations. The angular resolution, defined as the σ of a 2-dimensional Gaussian distribution, at those energies is ≲ 0.07°, while the energy resolution is 16%. We also re-evaluate the effect of the systematic uncertainty on the data taken with the MAGIC telescopes after the upgrade. We estimate that the systematic uncertainties can be divided in the following components: < 15% in energy scale, 11%–18% in flux normalization and ± 0.15 for the energy spectrum power-law slope.  相似文献   
47.
48.
49.
After observation of hundreds of Thunderstorm Ground Enhancements (TGEs) we measure energy spectra of particles originated in clouds and directed towards Earth. We use these “beams” for calibration of cosmic ray detectors located beneath the clouds at an altitude of 3200 m at Mount Aragats in Armenia. The calibrations of particle detectors with fluxes of TGE gamma rays are in good agreement with simulation results and allow estimation of the energy thresholds and efficiencies of numerous particle detectors used for studying galactic and solar cosmic rays.  相似文献   
50.
PEPSI is the bench‐mounted, two‐arm, fibre‐fed and stabilized Potsdam Echelle Polarimetric and Spectroscopic Instrument for the 2×8.4 m Large Binocular Telescope (LBT). Three spectral resolutions of either 43 000, 120 000 or 270 000 can cover the entire optical/red wavelength range from 383 to 907 nm in three exposures. Two 10.3k×10.3k CCDs with 9‐µm pixels and peak quantum efficiencies of 94–96 % record a total of 92 échelle orders. We introduce a new variant of a wave‐guide image slicer with 3, 5, and 7 slices and peak efficiencies between 92–96 %. A total of six cross dispersers cover the six wavelength settings of the spectrograph, two of them always simultaneously. These are made of a VPH‐grating sandwiched by two prisms. The peak efficiency of the system, including the telescope, is 15 % at 650 nm, and still 11 % and 10 % at 390 nm and 900 nm, respectively. In combination with the 110 m2 light‐collecting capability of the LBT, we expect a limiting magnitude of ≈20th mag in V in the low‐resolution mode. The R = 120 000 mode can also be used with two, dual‐beam Stokes IQUV polarimeters. The 270 000‐mode is made possible with the 7‐slice image slicer and a 100‐µm fibre through a projected sky aperture of 0.74″, comparable to the median seeing of the LBT site. The 43 000‐mode with 12‐pixel sampling per resolution element is our bad seeing or faint‐object mode. Any of the three resolution modes can either be used with sky fibers for simultaneous sky exposures or with light from a stabilized Fabry‐Pérot étalon for ultra‐precise radial velocities. CCD‐image processing is performed with the dedicated data‐reduction and analysis package PEPSI‐S4S. Its full error propagation through all image‐processing steps allows an adaptive selection of parameters by using statistical inferences and robust estimators. A solar feed makes use of PEPSI during day time and a 500‐m feed from the 1.8 m VATT can be used when the LBT is busy otherwise. In this paper, we present the basic instrument design, its realization, and its characteristics. Some pre‐commissioning first‐light spectra shall demonstrate the basic functionality. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号