首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
天文学   33篇
综合类   1篇
自然地理   1篇
  2011年   3篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2006年   9篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  1997年   1篇
  1988年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
31.
The existing models of population distribution often focus on the region with a single city or even multiple centers, and lack the detailed explorations of the common and special type of urbanization areas with two centers. Taking Beijing-Tianjin region of China, which is a distinct dual-nuclei metropolitan area in the world, as an example and choosing Landsat-5 TM image in 2005, population, etc. as the data, this paper devotes to comprehending and illustrating a model of Cassini growth of population between the two metropolitan cities through the research of spatial population distribution pattern, aided with RS and GIS techniques. Main technical processes include Kriging interpolation of the population data and character simulation of the Cassini ovals. According to the calculation of a/b, a key characteristic index of Cassini growth model, the spatial structures of population distribution were given. When a/b<1, it is a curve with two separated loops with a population density more than 3000 persons/km2. When a/b=1, it is a lemniscate curve with a population density about 3000 persons/km2. When 1<a/b√2, it is a dog-bone shaped concave curve with a population density between 500–3000 persons/km2. When a/b=√2, it is an oblate curve with a population density about 500 persons/km2. When a/b>√2, there is an oval-shaped convex curve with a population density less than 500 persons/km2. The results show that owing to the combined action and influence of the regional dual-nuclei, the population distribution of Beijing-Tianjin region is in accord with Cassini model significantly. There-fore, there is Cassini growth of population between the two metropolitan cities in Beijing-Tianjin region. In addition, the process of Cassini growth has extraordinarily instructive significance for judging the development stages of the dual-nuclei metropolitan areas. Foundation item: Under the auspices of National High-Tech Research and Development Program of China (863 Program) (No. 2007AA12Z235), National Natural Science Foundation of China (No. 40471058)  相似文献   
32.
The Visual and Infrared Mapping Spectrometer (VIMS) instrument on the Cassini Saturn Orbiter returned spectral imaging data as the spacecraft undertook six close encounters with Titan beginning 7 July, 2004. Three of these flybys each produced overlapping coverage of two distinct regions of Titan's surface. Twenty-four points were selected on approximately opposite hemispheres to serve as photometric controls. Six points were selected in each of four reflectance classes. On one hemisphere each control point was observed at three distinct phase angles. From the derived phase coefficients, preliminary normal reflectances were derived for each reflectance class. The normal reflectance of Titan's surface units at 2.0178 μm ranged from 0.079 to 0.185 for the most absorbing to the most reflective units assuming no contribution from absorbing haze. When a modest haze contribution of τ=0.1 is considered these numbers increase to 0.089–0.215. We find that the lowest three reflectance classes have comparable normal reflectance on either hemisphere. However, for the highest brightness class the normal reflectance is higher on the hemisphere encompassing longitude 14–65° compared to the same high brightness class for the hemisphere encompassing 122–156° longitude. We conclude that an albedo dichotomy observed in continental sized units on Titan is due not only to one unit having more areal coverage of reflective material than the other but the material on the brighter unit is intrinsically more reflective than the most reflective material on the other unit. This suggests that surface renewal processes are more widespread on Titan's more reflective units than on its less reflective units.

We note that one of our photometric control points has increased in reflectance by 12% relative to the surrounding terrain from July of 2004 to April and May of 2005. Possible causes of this effect include atmospheric processes such as ground fog or orographic clouds; the suggestion of active volcanism cannot be ruled out.

Several interesting circular features which resembled impact craters were identified on Titan's surface at the time of the initial Titan flyby in July of 2004. We traced photometric profiles through two of these candidate craters and attempted to fit these profiles to the photometric properties expected from model depressions. We find that the best-fit attempt to model these features as craters requires that they be unrealistically deep, approximately 70 km deep. We conclude that despite their appearance, these circular features are not craters, however, the possibility that they are palimpsests cannot be ruled out.

We used two methods to test for the presence of vast expanses of liquids on Titan's surface that had been suggested to resemble oceans. Specular reflection of sunlight would be indicative of widespread liquids on the surface; we found no evidence of this. A large liquid body should also show uniformity in photometric profile; we found the profiles to be highly variable. The lack of specular reflection and the high photometric variability in the profiles across candidate oceans is inconsistent with the presence of vast expanses of flat-lying liquids on Titan's surface. While liquid accumulation may be present as small, sub-pixel-sized bodies, or in areas of the surface which still remain to be observed by VIMS, the presence of large ocean-sized accumulations of liquids can be ruled out.

The Cassini orbital tour offers the opportunity for VIMS to image the same parts of Titan's surface repeatedly at many different illumination and observation geometries. This creates the possibility of understanding the properties of Titan's atmosphere and haze by iteratively adapting models to create a best fit to the surface reflectance properties.  相似文献   

33.
The Cassini Imaging Science Subsystem (ISS) acquired 282, 258, and 513 high-resolution images (<800 m/pixel) of Mimas, Tethys, and Iapetus, respectively, during two close flyby of Tethys and Iapetus and eight non-targeted flybys between 2004 and 2007. We combined these images with lower-resolution Cassini images and others taken by Voyager cameras to produce high-resolution semi-controlled mosaics of Mimas, Tethys, and Iapetus. These global mosaics are the baseline for high-resolution Mimas and Iapetus maps and a Tethys atlas. The nomenclature used in these maps was proposed by the Cassini imaging team and was approved by the International Astronomical Union (IAU). The two maps and the atlas are available to the public through the Imaging Team's website [http://ciclops.org/maps] and the Planetary Data System [http://pds.jpl.nasa.gov].  相似文献   
34.
The Cassini Imaging Science Subsystem (ISS) acquired 377 high-resolution images (<1 km/pixel) during three close flybys of Enceladus in 2005 [Porco, C.C., et al., 2006. Cassini observes the active south pole of Enceladus. Science 311, 1393-1401.]. We combined these images with lower resolution Cassini images and four others taken by Voyager cameras to produce a high-resolution global controlled mosaic of Enceladus. This global mosaic is the baseline for a high-resolution Enceladus atlas that consists of 15 tiles mapped at a scale of 1:500,000. The nomenclature used in this atlas was proposed by the Cassini imaging team and was approved by the International Astronomical Union (IAU). The whole atlas is available to the public through the Imaging Team's website (http://ciclops.org/maps).  相似文献   
35.
Data from the Cassini plasma spectrometer (CAPS) electron spectrometer (ELS) have been found to be contaminated with an energy-independent background count rate which has been associated with radiation sources on Cassini. In this paper we describe this background radiation and quantitatively assess its impact on numerically integrated electron moments. The general properties of such a background and its effects on numerical moments are derived. The properties of the ELS background are described and a model for the background presented. A model to generate synthetic ELS spectra is presented and used to evaluate the density and temperature of pure noise and then extended to include ambient distributions. It is shown that the presence of noise produces a saturation of the electron density and temperature at quasi-constant values when the instrument is at background, but that these noise level moments are dependent on the floating spacecraft potential and the orientation of the ELS instrument with respect to the spacecraft. When the ambient distribution has a poor signal-to-noise ratio (SNR) the noise determines the density and temperature; however, as the SNR increases (increasing primarily with density) the density and temperature tend to those of the ambient distribution. It is also shown that these noise effects produce highly artificial density-temperature inverse correlations. A method to subtract this noise is presented and shown to correct for the presence of the noise. Simulated error estimates for the density and temperature are also presented. The analysis described in this paper not only applies to weak background noise, but also to more significant penetrating backgrounds such as those in radiation belt regions of planetary magnetospheres.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号