首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2234篇
  免费   193篇
  国内免费   377篇
测绘学   85篇
大气科学   302篇
地球物理   242篇
地质学   514篇
海洋学   123篇
天文学   1311篇
综合类   67篇
自然地理   160篇
  2024年   4篇
  2023年   31篇
  2022年   39篇
  2021年   42篇
  2020年   43篇
  2019年   47篇
  2018年   45篇
  2017年   42篇
  2016年   54篇
  2015年   67篇
  2014年   92篇
  2013年   96篇
  2012年   99篇
  2011年   162篇
  2010年   123篇
  2009年   200篇
  2008年   209篇
  2007年   212篇
  2006年   176篇
  2005年   171篇
  2004年   148篇
  2003年   152篇
  2002年   93篇
  2001年   102篇
  2000年   82篇
  1999年   61篇
  1998年   70篇
  1997年   29篇
  1996年   17篇
  1995年   25篇
  1994年   9篇
  1993年   9篇
  1992年   8篇
  1991年   4篇
  1990年   10篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   6篇
  1985年   7篇
  1984年   3篇
  1983年   1篇
  1980年   2篇
  1978年   1篇
  1954年   1篇
排序方式: 共有2804条查询结果,搜索用时 31 毫秒
791.
Based on a LogN-LogS relation we have shown that the EGRET unidentified source (UnidS) distribution closely follows the Galactic spiral arm structure. This seems to satisfy the hypothesis that the EGRET UnidS arise due to energetic interactions with molecular clouds that reside on the spiral arms. Furthermore, the luminosity distribution of the unidentified sources features a double Gaussian distribution. We suggest that a combined distribution of OB associations, SNR and superbubbles interacting with molecular clouds within the spiral arms are the most likely counterparts of the unidentified sources.  相似文献   
792.
793.
The properties of clusters of galaxies offer key insights into the assembly process of structure in the universe. Numerical simulations of cosmic structure formation in a hierarchical, dark matter dominated universe suggest that galaxy cluster concentrations, which are a measure of a halo's central density, decrease gradually with virial mass. However, cluster observations have yet to confirm this correlation. The slopes of the run of measured concentrations with virial mass are often either steeper or flatter than that predicted by simulations. In this work, we present the most complete sample of observed cluster concentrations and masses yet assembled, including new measurements for 10 strong-lensing clusters, thereby more than doubling the existing number of strong-lensing concentration estimates. We fit a power law to the observed concentrations as a function of virial mass, and find that the slope is consistent with the slopes found in simulations, though our normalization factor is higher. Observed lensing concentrations appear to be systematically larger than X-ray concentrations, a more pronounced effect than that found in simulations. We also find that at a fixed mass, the bulk of observed cluster concentrations are distributed lognormally, with the exception of a few anomalously high concentration clusters. We examine the physical processes likely responsible for the discrepancy between lensing and X-ray concentrations, and for the anomalously high concentrations in particular. The forthcoming Millennium simulation results will offer the most comprehensive comparison set to our findings of an observed concentration–mass power law relation.  相似文献   
794.
We show that the new ephemeris-space multiple-address-comparison (eMAC) method solves asteroid linking problems despite large parallaxes by applying the method to astrometric asteroid observation sets obtained nearly simultaneously with the Spitzer space telescope, the Canada–France–Hawaii Telescope (CFHT), and European Southern Observatory's Very Large Telescope (VLT). For main-belt asteroids, the parallax between Spitzer and the Earth-based telescopes is approximately one degree which is large as compared to a typical parallax for solely Earth-based telescopes in the arcseconds regime. In the eMAC method, we reduce the initially huge amount of possible linkages between observation sets by comparing samples of ephemerides that have been computed separately for all sets at, say, three common dates. If the non-zero ephemeris probability densities overlap at all common dates, we try to find an orbit solution for these so-called trial linkages. If there exists an orbit which reproduces all the astrometric observations assuming predefined observational errors, we call it a linkage. Known asteroids are independently identified among Spitzer, CFHT, and VLT astrometry, and comparing the identified observations to the linkages found shows that the method found all known correct linkages present in the data. In addition, we also found five previously unpublished linkages between Spitzer astrometry and Earth-based astrometry. Based on our simulations, we found virtually all Spitzer-related linkages between two single-night observation sets, and more than 99.4% of linkages between two single-night observation sets obtained by Earth-based observatories. Virtually all correct linkages consisting of at least three single-night sets were also detected. The results show that large-parallax discovery observations made from a spacecraft can be linked to Earth-based follow-up observations to ensure that the objects are not lost. Furthermore, we compute the heliocentric and Spitzer-centric distances as well as the corresponding solar phase angles at the dates of Spitzer observations. Based on comparisons to simulated geocentric observations, we also show that, for typical nearly-simultaneous observations, the parallax reduces the distance uncertainties by several orders of magnitude.  相似文献   
795.
796.
Knowledge of the intrinsic shape of galaxy clusters is very important in investigating cosmic structure formation and astrophysical processes. The reconstruction of the 3D structure usually relies on deprojecting 2D X-ray, Sunyaev–Zeldovich (SZ) and/or gravitational lensing observations. As known, a joint analysis of these data sets can provide the elongation of the cluster along the line of sight together with its length and width in the plane of the sky. An unbiased measurement of the Hubble constant can be also inferred. Due to some intrinsic degeneracies, the observational constraints obtained from such projected data sets are not enough to allow an unique inversion. In general, the projected maps can be at the same time compatible with prolate, oblate and with many triaxial configurations. Even a prolate cluster might be interpreted as an oblate system and vice versa. Assuming that the cluster is axially symmetric is likely to overestimate the intrinsic ellipticity, whereas the system always looks rounder performing the inversion under the hypothesis of a triaxial cluster aligned with the line of sight. In general, analysing triaxial clusters under the prolate or oblate assumption may introduce strong biases even when the clusters are actually near to axial symmetry whereas the systematics introduced assuming the cluster to be aligned with the line of sight are more under control.  相似文献   
797.
Radar imaging results for Mercury's non-polar regions are presented. The dual-polarization, delay-Doppler images were obtained from several years of observations with the upgraded Arecibo S-band (λ12.6-cm) radar telescope. The images are dominated by radar-bright features associated with fresh impact craters. As was found from earlier Goldstone-VLA and pre-upgrade Arecibo imaging, three of the most prominent crater features are located in the Mariner-unimaged hemisphere. These are: “A,” an 85-km-diameter crater (348° W, 34° S) whose radar ray system may be the most spectacular in the Solar System; “B,” a 95-km-diameter crater (343° W, 58° N) with a very bright halo but less distinct ray system; and “C,” an irregular feature with bright ejecta and rays distributed asymmetrically about a 125-km source crater (246° W, 11° N). Due south of “C” lies a “ghost” feature (242° W, 27° S) that resembles “A” but is much fainter. An even fainter such feature is associated with Bartok Crater. These may be two of the best mercurian examples of large ejecta/ray systems observed in an intermediate state of degradation. Virtually all of the bright rayed craters in the Mariner 10 images show radar rays and/or bright rim rings, with radar rays being less common than optical rays. Radar-bright craters are particularly common in the H-7 quadrangle. Some diffuse radar albedo variations are seen that have no obvious association with impact ejecta. In particular, some smooth plains regions such as the circum-Caloris plains in Tir, Budh, and Sobkou Planitiae and the interiors of Tolstoj and “Skinakas” basins show high depolarized brightness relative to their surroundings, which is the reverse of the mare/highlands contrast seen in lunar radar images. Caloris Basin, on the other hand, appears dark and featureless in the images.  相似文献   
798.
Significant alignment and signed-intensity anomalies of local features of the cosmic microwave background (CMB) are detected on the three-year Wilkinson Microwave Anisotropy Probe data, through a decomposition of the signal with steerable wavelets on the sphere. In addition to identifying local features of a signal at specific scales, steerable wavelets allow one to determine their local orientation and signed intensity. First, an alignment analysis identifies two mean preferred planes in the sky, both with normal axes close to the CMB dipole axis. The first plane is defined by the directions towards which local CMB features are anomalously aligned. A mean preferred axis is also identified in this plane, located very close to the ecliptic poles axis. The second plane is defined by the directions anomalously avoided by local CMB features. This alignment anomaly provides further insight on recent results. Secondly, a signed-intensity analysis identifies three mean preferred directions in the southern Galactic hemisphere with anomalously high or low temperature of local CMB features: a cold spot essentially identified with a known cold spot, a second cold spot lying very close to the southern end of the CMB dipole axis, and a hotspot lying close to the southern end of the ecliptic poles axis. In both analyses, the anomalies are observed at wavelet scales corresponding to angular sizes around 10° on the celestial sphere, with global significance levels around 1 per cent. Further investigation reveals that the alignment and signed-intensity anomalies are only very partially related. Instrumental noise, foreground emissions and some form of other systematics are strongly rejected as possible origins of the detections. An explanation might still be envisaged in terms of a global violation of the isotropy of the Universe, inducing an intrinsic statistical anisotropy of the CMB.  相似文献   
799.
We report regional-scale low-resolution backscatter images of Titan's surface acquired by the Cassini RADAR scatterometer at a wavelength of 2.18-cm. We find that the average angular dependence of the backscatter from large regions and from specific surface features is consistent with a model composed of a quasi-specular Hagfors term plus a diffuse cosine component. A Gaussian quasi-specular term also fits the data, but less well than the Hagfors term. We derive values for the mean dielectric constant and root-mean-square (rms) slope of the surface from the quasi-specular term, which we ascribe to scattering from the surface interface only. The diffuse term accommodates contributions from volume scattering, multiple scattering, or wavelength-scale near-surface structure. The Hagfors model results imply a surface with regional mean dielectric constants between 1.9 and 3.6 and regional surface roughness that varies between 5.3° and 13.4° in rms-slope. Dielectric constants between 2 and 3 are expected for a surface composed of solid simple hydrocarbons, water ice, or a mixture of both. Smaller dielectric constants, between 1.6 and 1.9, are consistent with liquid hydrocarbons, while larger dielectric constants, near 4.5, may indicate the presence of water-ammonia ice [Lorenz, R.D., 1998. Icarus 136, 344-348] or organic heteropolymers [Thompson, W.R., Squyres, S.W., 1990. Icarus 86, 336-354]. We present backscatter images corrected for angular effects using the model residuals, which show strong features that correspond roughly to those in 0.94-μm ISS images. We model the localized backscatter from specific features to estimate dielectric constant and rms slope when the angular coverage is within the quasi-specular part of the backscatter curve. Only two apparent surface features are scanned with angular coverage sufficient for accurate modeling. Data from the bright albedo feature Quivira suggests a dielectric constant near 2.8 and rms slope near 10.1°. The dark albedo feature Shangri-La is best fit by a Hagfors model with a dielectric constant close to 2.4 and an rms slope near 9.5°. From the modeled backscatter curves, we find the average radar albedo in the same linear (SL) polarization to be near 0.34. We constrain the total-power albedo in order to compare the measurements with available groundbased radar results, which are typically obtained in both senses of circular polarization. We estimate an upper limit of 0.4 on the total-power albedo, a value that is significantly higher than the 0.21 total albedo value measured at 13 cm [Campbell, D., Black, G., Carter, L., Ostro, S., 2003. Science 302, 431-434]. This is consistent with a surface that has more small-scale structure and is thus more reflective at 2-cm than 13-cm. We compare results across overlapping observations and observe that the reduction and analysis are repeatable and consistent. We also confirm the strong correlations between radar and near-infrared images.  相似文献   
800.
Jupiter's equatorial atmosphere, much like the Earth's, is known to show quasi-periodic variations in temperature, particularly in the stratosphere, but variations in other jovian atmospheric tracers have not been studied for any correlations to these oscillations. Data taken at NASA's Infrared Telescope Facility (IRTF) from 1979 to 2000 were used to obtain temperatures at two levels in the atmosphere, corresponding to the upper troposphere (250 mbar) and to the stratosphere (20 mbar). We find that the data show periodic signals at latitudes corresponding to the troposphere zonal wind jets, with periods ranging from 4.4 (stratosphere, 95% confidence at 4° S planetographic latitude) to 7.7 years (troposphere, 97% confidence at 6° N). We also discuss evidence that at some latitudes the troposphere temperature variations are out of phase from the stratosphere variations, even where no periodicity is evident. Hubble Space Telescope images were used, in conjunction with Voyager and Cassini data, to track small changes in the troposphere zonal winds from 20° N to 20° S latitude over the 1994-2000 time period. Oscillations with a period of 4.5 years are found near 7°-8° S, with 80-85% significance. Further, the strongest evidence for a QQO-induced tropospheric wind change tied to stratospheric temperature change occurs near these latitudes, though tropospheric temperatures show little periodicity here. Comparison of thermal winds and measured zonal winds for three dates indicate that cloud features at other latitudes are likely tracked at pressures that can vary by up to a few hundred millibar, but the cloud altitude change required is too large to explain the wind changes measured at 7° S.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号