首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2234篇
  免费   193篇
  国内免费   377篇
测绘学   85篇
大气科学   302篇
地球物理   242篇
地质学   514篇
海洋学   123篇
天文学   1311篇
综合类   67篇
自然地理   160篇
  2024年   4篇
  2023年   31篇
  2022年   39篇
  2021年   42篇
  2020年   43篇
  2019年   47篇
  2018年   45篇
  2017年   42篇
  2016年   54篇
  2015年   67篇
  2014年   92篇
  2013年   96篇
  2012年   99篇
  2011年   162篇
  2010年   123篇
  2009年   200篇
  2008年   209篇
  2007年   212篇
  2006年   176篇
  2005年   171篇
  2004年   148篇
  2003年   152篇
  2002年   93篇
  2001年   102篇
  2000年   82篇
  1999年   61篇
  1998年   70篇
  1997年   29篇
  1996年   17篇
  1995年   25篇
  1994年   9篇
  1993年   9篇
  1992年   8篇
  1991年   4篇
  1990年   10篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   6篇
  1985年   7篇
  1984年   3篇
  1983年   1篇
  1980年   2篇
  1978年   1篇
  1954年   1篇
排序方式: 共有2804条查询结果,搜索用时 15 毫秒
621.
Comet 9P/Tempel 1 was the target of a multi-wavelength worldwide investigation in 2005. The NASA Deep Impact mission reached the comet on 4.24 July 2005, delivering a 370-kg impactor which hit the comet at 10.3 km s−1. Following this impact, a cloud of gas and dust was excavated from the comet nucleus. The comet was observed in 2005 prior to and after the impact, at 18-cm wavelength with the Nançay radio telescope, in the millimeter range with the IRAM and CSO radio telescopes, and at 557 GHz with the Odin satellite. OH observations at Nançay provided a 4-month monitoring of the outgassing of the comet from March to June, followed by the observation of H2O with Odin from June to August 2005. The peak of outgassing was found to be around between May and July. Observations conducted with the IRAM 30-m radio telescope in May and July 2005 resulted in detections of HCN, CH3OH and H2S with classical abundances relative to water (0.12, 2.7 and 0.5%, respectively). In addition, a variation of the HCN production rate with a period of 1.73±0.10 days was observed in May 2005, consistent with the 1.7-day rotation period of the nucleus. The phase of these variations, as well as those of CN seen in July by Jehin et al. [Jehin, E., Manfroid, J., Hutsemékers, D., Cochran, A.L., Arpigny, C., Jackson, W.M., Rauer, H., Schulz, R., Zucconi, J.-M., 2006. Astrophys. J. 641, L145-L148], is consistent with a rotation period of the nucleus of 1.715 days and a strong variation of the outgassing activity by a factor 3 from minimum to maximum. This also implies that the impact took place on the rising phase of the “natural” outgassing which reached its maximum ≈4 h after the impact. Post-impact observations at IRAM and CSO did not reveal a significant change of the outgassing rates and relative abundances, with the exception of CH3OH which may have been more abundant by up to one order of magnitude in the ejecta. Most other variations are linked to the intrinsic variability of the comet. The Odin satellite monitored nearly continuously the H2O line at 557 GHz during the 38 h following the impact on the 4th of July, in addition to weekly monitoring. Once the periodic variations related to the nucleus rotation are removed, a small increase of outgassing related to the impact is present, which corresponds to the release of ≈5000±2000 tons of water. Two other bursts of activity, also observed at other wavelengths, were seen on 23 June and 7 July; they correspond to even larger releases of gas.  相似文献   
622.
Galina M. Chaban 《Icarus》2007,187(2):592-599
An absorption band at ∼4.26 μm wavelength attributed to the asymmetric stretching mode of CO in CO2 has been found on two satellites of Jupiter and several satellites of Saturn. The wavelength of pure CO2 ice determined in the laboratory is 4.2675 μm, indicating that the CO2 on the satellites occurs either trapped in a host material, or in a chemical or physical complex with other materials, resulting in a blue shift of the wavelength of the band. In frequency units, the shifts in the satellite spectra range from 3.7 to 11.3 cm−1. We have performed ab initio quantum chemical calculations of CO2 molecules chemically complexed with one, two, and more H2O molecules and molecules of CH3OH to explore the possibility that the blue shift of the band is caused by chemical complexing of CO2 with other volatile materials. Our computations of the harmonic and anharmonic vibrational frequencies using high levels of theory show a frequency shift to the blue by 5 cm−1 from pure CO2 to CO-H2O, and an additional 5 cm−1 from CO2-H2O to CO2-2H2O. Complexing with more than two H2O molecules does not increase the blue shift. Complexes of CO2 with one molecule of CH3OH and with one CH3OH plus one H2O molecule produce smaller shifts than the CO2-2H2O complex. Laboratory studies of CO2:H2O in a solid N2 matrix also show a blue shift of the asymmetric stretching mode.  相似文献   
623.
Comet Hale-Bopp was imaged at wavelengths from 1.87 to 2.22 μm by HST/NICMOS in post-perihelion observations starting on UT 1997 August 27.95. Diffraction-limited (∼02) images were obtained at high signal-to-noise (∼1500) to probe the composition and dynamics of the inner coma and also the size and activity of the nucleus. The velocities of several unusual morphological features over a 1.7 h period, indicate that a significant outburst occurred 7.4 h prior to these images while the comet was at a heliocentric distance of 2.49 AU. Similar features are also apparent after re-analysis of pre-perihelion ground-based images. The inner coma (radius ?2500 km) is dominated by an “arc” feature, which expanded and became more diffuse with time. This feature can be modeled as the bright central portion of a “jet of outburst” from a near-equatorial region of the nucleus. Less prominent, time-variable linear and circular morphologies are also apparent. The expansion rates of both the arc feature and the circular morphologies imply a common origin and also suggest a grain size distribution with two broad maxima. In addition, several static linear features extend to the edge of the field of view (21,100 km). Radial brightness profiles are highly asymmetric and only approach a ρ−1 decline at distances ?15,000 km. Images in a narrow-band filter at 2.04 μm exhibit a ∼4% absorption feature relative to nearly simultaneous images at wavelengths of 2.22, 1.90, and 1.87 μm. This absorption is attributed to H2O ice in the coma grains. The spatial distribution and expansion velocity of the absorption at 2.04 μm indicate that these grains are associated with the outburst. The constancy of the absorption feature indicates no appreciable sublimation over 1.7 h. The unresolved nucleus has a flux density consistent with a 40±10 km diameter assuming a 4% geometric albedo.  相似文献   
624.
Thermal inertia determines the temperature distribution over the surface of an asteroid and therefore governs the magnitude the Yarkovsky effect. The latter causes gradual drifting of the orbits of km-sized asteroids and plays an important role in the delivery of near-Earth asteroids (NEAs) from the main belt and in the dynamical spreading of asteroid families. At present, very little is known about the thermal inertia of asteroids in the km size range. Here we show that the average thermal inertia of a sample of NEAs in the km-size range is . Furthermore, we identify a trend of increasing thermal inertia with decreasing asteroid diameter, D. This indicates that the dependence of the drift rate of the orbital semimajor axis on the size of asteroids due to the Yarkovsky effect is a more complex function than the generally adopted D−1 dependence, and that the size distribution of objects injected by Yarkovsky-driven orbital mobility into the NEA source regions is less skewed to smaller sizes than generally assumed. We discuss how this fact may help to explain the small difference in the slope of the size distribution of km-sized NEAs and main-belt asteroids.  相似文献   
625.
Based on our Hα interferometric observations and CO data, we analyze the structure and kinematics of the gas in an extended region of the Cygnus arm around the recently discovered star WR 142a. We have established that WR 142a and the ionized hydrogen in its immediate neighborhood are associated with the complex of molecular clouds observed in a region with l ~ 78°–80°30′, b ~ 2°–3°20′, and V LSR ~ 4–16 km s?1. Traces of the action of the stellar wind from WR 142a on the ambient gas have been found to the northeast of the star in a region devoid of dense absorbing foreground clouds. These include very weak thin gas and dust filaments as well as high-velocity components of the Hα profile, which can be interpreted as a possible expansion of the shell swept up by the wind with a velocity as high as 50–80 km s?1. Giant regions of reduced CO emission dominated by high-velocity motions of ionized hydrogen have been detected. Stars of the Cyg OB2 association and the cluster NGC 6910 can be responsible for these motions.  相似文献   
626.
On 4 July 2005 at 5:52 UT the Deep Impact mission successfully completed its goal to hit the nucleus of 9P/Tempel 1 with an impactor, forming a crater on the nucleus and ejecting material into the coma of the comet. NASA's Submillimeter Wave Astronomy Satellite (SWAS) observed the 110-101 ortho-water ground-state rotational transition in Comet 9P/Tempel 1 before, during, and after the impact. No excess emission from the impact was detected by SWAS and we derive an upper limit of 1.8×107 kg on the water ice evaporated by the impact. However, the water production rate of the comet showed large natural variations of more than a factor of three during the weeks before and after the impact. Episodes of increased activity with alternated with periods with low outgassing (). We estimate that 9P/Tempel 1 vaporized a total of N∼4.5×1034 water molecules (∼1.3×109 kg) during June-September 2005. Our observations indicate that only a small fraction of the nucleus of Tempel 1 appears to be covered with active areas. Water vapor is expected to emanate predominantly from topographic features periodically facing the Sun as the comet rotates. We calculate that appreciable asymmetries of these features could lead to a spin-down or spin-up of the nucleus at observable rates.  相似文献   
627.
中国地区大气CO2浓度对全球气候变化有重要的影响。本文基于日本GOSAT卫星短波红外CO2的长期观测数据,对2010年-2016年中国大陆上空CO2浓度的分布特征和变化趋势进行分析研究。利用高精度的地基TCCON站点CO2观测对GOSAT CO2数据进行精度验证,结果表明,GOSAT CO2具有较高的精度,相对TCCON CO2的偏差为-1.04±2.10 ppm,两者的相关系数高达0.90;利用中国地区7年的GOSAT CO2观测数据分析研究显示,CO2浓度高值主要分布在中国的浙江-江苏-安徽地区、京津冀地区和湖南-湖北-河南-陕西地区;截至2016年,中国大部地区CO2浓度超过400 ppm;中国大陆CO2平均浓度呈现明显的逐年增长趋势,从2010年的387.76 ppm增长到2016年的402.18 ppm,年增长率约为2.31 ppm/a,略高于同期全球平均水平。  相似文献   
628.
We report the first detection of propane, C3H8, in Saturn's stratosphere. Observations taken on September 8, 2002 UT at NASA's IRTF using TEXES, show multiple emission lines due to the 748 cm−1ν21 band of C3H8. Using a line-by-line radiative transfer code, we are able to fit the data by scaling the propane vertical mixing ratio profile from the photochemical model of Moses et al. [2000. Icarus 143, 244-298]. Multiplicative factors of 0.7 and 0.65 are required to fit the −20° and −80° planetocentric latitude spectra. The resultant profiles are characterized by a 5 mbar mixing ratio of 2.7±0.8×10−8 at −20° and at −80° latitude. These results suggest that the time scale for meridional circulation lies between the net photochemical lifetimes of C2H2 and C3H8, ≈30-600 years.  相似文献   
629.
徐茜  王晓峰  任志远  李晶 《测绘科学》2012,37(5):132-134,144
草地植被净第一性生产力表征了草地生态系统的物质量,是评价草地生态系统物质生产能力的重要指标。本文基于ERDAS和ArcMap软件平台,由1990、2000和2007年ETM+影像数据提取出NDVI值,结合相应时段的气候数据,对陕北农牧交错带草地生态系统净第一性生产力及固碳释氧量进行测算,研究并分析了1990-2007年间其NPP及固碳释氧量的时空变化特征。  相似文献   
630.
本文分析了GPS三频组合观测值在波长、电离层误差和偶然误差等方面的特性,并定义了衡量其特性的3种指标;结合传统的伪距/相位组合法,探讨了三频组合观测值探测与修复周跳的原理和方法。利用模拟的L5观测数据,进行了多种情况下周跳的探测与修复。结果表明:该方法能在单历元间准确探测出各个频率上发生的大、小不等的周跳。相对于原始观测值,长波长的三频组合观测值可以更有效地探测与修复周跳。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号