首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   451篇
  免费   29篇
  国内免费   50篇
测绘学   8篇
大气科学   61篇
地球物理   84篇
地质学   179篇
海洋学   69篇
天文学   91篇
综合类   7篇
自然地理   31篇
  2024年   2篇
  2023年   5篇
  2022年   5篇
  2021年   8篇
  2020年   12篇
  2019年   10篇
  2018年   5篇
  2017年   17篇
  2016年   14篇
  2015年   24篇
  2014年   22篇
  2013年   28篇
  2012年   18篇
  2011年   18篇
  2010年   11篇
  2009年   41篇
  2008年   35篇
  2007年   39篇
  2006年   18篇
  2005年   20篇
  2004年   28篇
  2003年   11篇
  2002年   18篇
  2001年   14篇
  2000年   10篇
  1999年   15篇
  1998年   18篇
  1997年   11篇
  1996年   16篇
  1995年   6篇
  1994年   5篇
  1993年   4篇
  1992年   6篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1985年   1篇
  1982年   1篇
  1973年   1篇
排序方式: 共有530条查询结果,搜索用时 15 毫秒
201.
铼是生产涡轮发动机耐高温超级合金的核心元素,被誉为改变航空业的金属。斑岩铜矿伴生的辉钼矿和还原性沉积岩中的硫化物是铼的主要赋存矿物。从目前铼的产量来看,全球近一半的铼产出于智利的斑岩铜钼矿床。据美国地质调查局估计,智利的铼探明储量在1300吨。其他国家依次是美国、俄罗斯、秘鲁等国,均在300吨左右。从现有的数据估算我国目前的铼储量约为250吨,以辉钼矿伴生为主。从地球化学的角度来看,铼是地球上最稀有的金属之一;作为中度不相容的亲铜、亲铁元素,铼倾向于在岩浆中富集;铼对硫逸度、氧逸度敏感,在表生过程中可以通过氧化还原过程富集于黑色页岩等还原性沉积物中。封闭、半封闭的海湾是其常见的富集位置。在埃迪卡拉纪和寒武纪,大气中的氧气含量大幅度上升,是表生过程中铼迁移、富集的最佳时期。我国华南广泛分布形成于近海环境的埃迪卡拉纪-寒武纪黑色页岩,仅鄂西分布范围就有数千平方千米,厚度可以达到200m,其中铼的含量达到0. 1×10~(-6)~0. 6×10~(-6),远景资源量在万吨以上,是寻找铼矿的最佳选区之一。  相似文献   
202.
黑碳气溶胶研究进展Ⅰ:排放、清除和浓度   总被引:28,自引:0,他引:28  
黑碳气溶胶是近几年非常活跃的一个研究课题,因为黑碳气溶胶吸收太阳和地球大气的辐射,对全球气候变暖有重要的影响。中国黑碳气溶胶的排放和浓度比同纬度的高,在全球气候变暖的大背景下,中国黑碳气溶胶一直受到国外的关注。综述了国内外黑碳气溶胶研究的最新进展,受篇幅的限制,文章分两篇,第一篇是黑碳气溶胶的排放、清除和浓度,第二篇是黑碳气溶胶的气候效应和拓展的研究领域。从黑碳排放的估算和大气浓度的测量方法进行描述,列出有关的测量结果,对黑碳气溶胶的排放和大气浓度进行国内外的初步比较分析。还对黑碳气溶胶排放和浓度测量误差进行了讨论,并对今后黑碳气溶胶研究提出了几点建议。  相似文献   
203.
Magnetized accretion flows around black holes which include standing or oscillating shock waves can produce very realistic spectrum till a few MeV. These shocks accelerate hot electrons which produce power-law spectrum. The post-shock region intercepts soft-photons from an external source, namely, a Keplerian disk and also from distributed sources such as the synchrotron photons emitted from thermal and non-thermal electrons originated in the pre-shock and post-shock flow. These photons are inverse Comptonized by the thermal and the non-thermal electrons present in the CENBOL region. Computations show that the emitted radiation is extended till a few MeV. We include the bulk motion Comptonization as well and discuss its importance vis-a-vis the power-law spectrum produced by non-thermal electrons.   相似文献   
204.
张明轩  屈进禄 《天文学报》2004,45(4):356-360
CygX-1高能辐射的时变特征可以通过短暴(shot)的性质反映.因此CygX-1的短暴性质,特别是处于低态时的性质曾被广泛研究,利用直接叠加短暴和自相关函数,对CygX-1高态时短暴的性质进行了研究.结果表明,当CygX-1处于高态时,其短暴的结构类似于低态时所具有的性质,短暴的半高宽随能量的增加按指数下降.此结果和康普顿化模型不一致.另外,短暴的能谱演化及结构的非对称性可以解释CygX-1中的时延现象.  相似文献   
205.
Summary. This paper reviews the physical state of stars and Interstellar Matter in the Galactic Bulge (radius kpc from the dynamical center of the Galaxy), in the Nuclear Bulge (kpc) and in the Sgr A Radio and GMC Complex, i.e. the central \,pc of our Galaxy. The Galactic Bulge is devoid of cold Interstellar Matter and consists mainly of old stars, while the Nuclear Bulge accounts for of the mass of all of the Interstellar Matter in the Galaxy. A similar ratio holds for the formation rate of medium and high mass stars in Bulge and Disk. The metal abundance of the Interstellar Matter in the Galactic Bulge is found to be . The H-to-CO conversion factors to be applied to molecular gas in the Central Region are by factors 3 (Arimoto et al. 1996) to 10 (Sodroski et al. 1995) lower than in the solar vicinity. Hence, most H masses derived for the Central Region appear to be considerably overestimated. The Nuclear Bulge is pervaded by a thermal plasma (K) which is responsible for the diffuse free-free emission. Lyman continuum photon and dust IR luminosity of the Nuclear Bulge again account for of the respective total luminosities of the Galaxy. Magnetic fields in the Nuclear Bulge are strong (up to mG) as compared with the Galactic Disk (a few tens of G). The field lines are oriented parallel to the galactic plane inside giant molecular clouds and perpendicular to the plane in the intercloud medium. The compact source Sgr A* is close to or at the dynamical center of the Galaxy. Its radio spectrum with a high frequency cut-off at GHz, a low frequency turnover at GHz and a flux density dependence in between can be explained by synchrotron emission from quasi-monoenergetic relativistic electrons. Due to an extinction between Sun and Galactic Center corresponding to , an intrinsic weakness of this source in the near infrared, and a strong background emission from warm dust there are only upper limits available for the flux density of Sgr A* in the far, mid and near infrared and X-ray regime. The size of Sgr A* in the radio regime is cm, its dereddened K-band flux density is mJy, its luminosity has upper limits of (if radiation comes from an Accretion Disk) and (if black-body radiation from an object with a single temperature of K is assumed). If anyone of the soft X-ray sources detected by ROSAT actually coincides with Sgr A*, its X-ray luminosity would be less than a few . With a dark mass of Sgr A* is the best candidate for a starving black hole, although there are no observational indications for the presence of a (Standard) Accretion Disk. While the radio/IR spectrum of Sgr A* is purely nonthermal, the spectrum integrated over the central parsec resembles that of a Seyfert galaxy. Sgr A* is embedded in the Hii region Sgr A West with part of the ionized gas forming a minispiral. Sgr A West is surrounded by the Circum Nuclear Disk, an irregular shaped assembly of molecular gas which extends from pc and rotates around the Galactic Center with an estimated dynamical time scale of \,yr. The total luminosity of of the central parsec is due to the radiation of early-type stars of which have now been directly identified as luminous blue supergiants. It is still debated, however, if these stars can also account for all of the ionization of Sgr A West. In addition, the central parsec contains red giants, AGB stars, and a few super giants of which the brightest are now identified by direct imaging. These stars – together with a few million low mass main sequence stars – account for the bulk of the 2.2\,m emission. The spatial distributions of the three stellar populations in the central pc are remarkably different. Sgr A* is – along the line-of-sight – presumably located close to the center of the Hii region Sgr A West, which in turn is located in front of the extended (pc) synchrotron source Sgr A East, which appears to be the remnant of a gigantic explosion (of the order of the energy of a single supernova explosion) which took place yr ago inside the GMC Sgr A East Core. X-ray observations show within pc a pervasive hot (keV) plasma of expansion age of yr. Both phenomena – as well as the formation of the Circum Nuclear Disk – may have the same origin. Influx of material is observed within the Nuclear Bulge on all distance scales. In the Nuclear Bulge (pc) as well as in the Circum Nuclear Disk (pc) inflow towards the Galactic Center occurs primarily in the galactic plane and amounts to a few . The accretion rate into the central Black Hole, deduced from the luminosity of Sgr A*, however, appears to be lower by at least five orders of magnitude (assuming standard disk accretion). But in an equilibrium state only part of the infalling mass which is not accreted by the Black Hole can be consumed by star formation. A mass inflow rate varying with time is a more natural explanation. Comparing the physical state of the Center of our Galaxy with that of Active Galactic Nuclei derived from observations and modelling, we find that most of the basic characteristics of an AGN are also present in the Galactic Center. Lacking are, however, both the evidence for a standard Accretion Disk and a hard UV spectrum with accompanying high excitation emission lines in the Galactic Center which are characteristic for AGN. The luminosity of the central parsec, , amounts to only of the total luminosity of the Galaxy of . Seen from a distance of M31 (kpc) with an angular resolution of (corresponding to a linear size of pc) the Center of our Galaxy would appear as a mildly active nucleus with some starburst activity and would probably be classified as a weak Seyfert galaxy. The synchrotron spectrum of Sgr A*, however, would be completely masked by reprocessed stellar light (i.e. free-free and dust emission). Received: October 21, 1996  相似文献   
206.
The continuum spectrum of OJ 287, like most other BL Lac objects, is featureless- no emission or absorption lines are observed. However, OJ 287 shows variations at different timescales in flux and polarization at various wavelength bands. Using the available variability data one can estimate the sizes of the emission regions in the source from light travel time arguments. We assume the emission mechanism to be synchrotron radiation by high energy electrons with single power law energy distribution. Theoretical synchrotron spectrum in the frequency range 1011–1017 H z is compared with the observed spectral shape, obtained from new multifrequency quasi-simultaneous observations, to estimate the lower and upper cut off frequencies. These frequencies are used to obtain theoretical values of the variability timescales and magnetic field in the emission region. We obtain a value of 0.93 G for the magnetic field and 5.184×104 sec for the cooling time from the quiescent continuum spectrum. The shock-in-jet model explains the spectrum where shocks accelerate the particles and amplify the magnetic field in the jet. This timescale is compared with the one obtained from observed short timescale variability (20 minutes) with proper beaming correction. The short timescale variations (200 minutes in the source frame), possibly caused by an additional, flaring, component of the source, are also used to calculate compressed magnetic field. The observed and theoretically estimated variability timescales and the shape of the spectrum suggest that there are more than one emission components in OJ 287.  相似文献   
207.
GIS空间数据库系统误差控制的黑箱方法   总被引:1,自引:0,他引:1  
史文中  刘文宝 《遥感学报》1998,2(3):199-203
GIS建库数据中系统误差的控制是当前GIS数据质量研究领域的重要方向之一。本文提出一种直接估计系统误差综合效应的黑箱方法,而传统的仿射变换将成为该法的特例。文中首先阐述黑箱方法的基本原理,然后根据多元统计学工具建立黑箱校正模型,最后给出模型辨识和参数辨识的具体方法。  相似文献   
208.
The Proterozoic terrane of the Black Hills, South Dakota, includes the composite Harney Peak leucogranite and associated pegmatites that were emplaced into metamorphosed pelites and graywackes. Available dates indicate that granite generation post-dated regional metamorphism and deformation that have been attributed to collision of the Wyoming and Superior cratons at 1760 Ma. Previous radiogenic and stable isotope work indicates that the exposed metasedimentary rocks are equivalent to sources of the leucogranites. In this study, whole rock and mineral compositions of the metasedimentary rocks were used to calculate the likely average residue mineralogies and melt fractions that would be generated by muscovite dehydration melting of the rocks. These were then used to model observed trace element compositions of the granites using published mineral/melt distribution coefficients. Model trace element melt compositions using pelitic and graywacke protoliths yield similar results.

The models reproduce well the observed depletion of transition metals and Ba in the granites relative to metasedimentary protoliths. The depletion is due mainly to high proportion of biotite with variable amounts of K-feldspar in the model residue. Sr is also depleted in the granites compared to source rocks, but to a lesser relative extent than Ba. This is because of the low biotite/melt distribution coefficient for Sr and because high proportion of plagioclase in the residue is compensated by high Sr concentrations in protoliths. Rubidium, Cs and Ta behaved as slightly compatible to incompatible elements, and therefore, were not strongly fractionated during melting. Of the considered elements, only B appears to have been highly incompatible relative to residue during melting. The protoliths had sufficient B to allow tourmaline crystallization in those parts of the Harney Peak Granite in which Ti concentration was sufficiently low not to enhance crystallization of biotite.

The reproducibility of observed trace element concentrations in the Harney Peak Granite by the models supports the often made proposition that metapelites and metagraywackes are common sources for leucogranites. This argues against mass input from the mantle into metagraywacke and metapelitic crustal sources or melting of amphibolites to generate the post-collisional Harney Peak and other similar peraluminous granite suites.  相似文献   

209.
HH—1886型特效中温黑色磷化液的研制   总被引:3,自引:0,他引:3  
唐林  马艳珉 《铀矿地质》1998,14(6):370-376
本文阐述了以磷酸锌盐和钙盐为基本原料,以硝酸盐和自制的AN促进剂为磷化复合促进剂,以有机酸为稳定剂,以含氯化合物为填料,添加有关添加剂,组成一种集磷化和钝化为一体的特效中温黑色磷化液。这种磷化液具有磷化温度适中(60—70℃)、磷化时间较短(10—15min)、磷化膜呈黑色且耐腐蚀性能强(硫酸铜点滴20—26min不变色)、沉渣量极少等特点。这种磷化液适用于各种中低碳钢、合金钢的防锈黑色磷化,特别适用于铁路轴承、机车部件等耐腐蚀和装饰性磷化。  相似文献   
210.
500hPa反气旋环流下滇中暴雨中尺度云团分析   总被引:3,自引:0,他引:3       下载免费PDF全文
利用GMS-5水汽图像,结合红外云图、micaps资料,对发生于2001年8月13日20时至14日20时500hPa反气旋环流天气背景下的滇中暴雨中尺度云团分析。结果表明:有明显中尺度结构、在红外云图和水汽图像上都白亮的区域是产生强降水的区域;由中尺度强对流系统(MCS)发展成为中尺度对流复合体(MCC),MCC的发展和维持,是直接造成此次暴雨的中尺度系统。物理机制上,高能高湿的潜在不稳定能量的聚集、垂直风切变的存在,是利于暴雨中尺度对流云团发展的有利环境条件,暴雨落区正好集中于(θε陡立密集区;温度平流和非地转湿Q矢量与湿Q矢量散度的进一步分析表明:次级环流导致扰动的不稳定发展,使低层水汽辐合抬升,引起中尺度对流云团发展和加强,是MCC生成的主要机制。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号