首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   2篇
  国内免费   1篇
地球物理   2篇
地质学   12篇
天文学   100篇
自然地理   1篇
  2019年   2篇
  2018年   1篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2011年   11篇
  2010年   18篇
  2009年   15篇
  2008年   17篇
  2007年   6篇
  2006年   2篇
  2005年   3篇
  2004年   10篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1990年   1篇
  1985年   1篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
61.
The Howardite–Eucrite–Diogenite (HED) suite is a family of differentiated meteorites that provide a unique opportunity to study the differentiation of small bodies. The likely parent-body of this meteorite group, (4) Vesta is presently under study by the Dawn mission, scrutinizing its surface in the visible and NIR infrared range. Here, we discuss how well the magmatic trends observed in HED might be retrieved from NIR spectroscopy, by studying laboratory spectra of 10 HED meteorites together with spectra from the RELAB database. We show that although an exsolution process did occur for most eucrites (i.e. decomposition of a primary calcic pyroxene into a high-Ca and low-Ca pyroxene), it does not affect the “bulk pyroxene” trend retrieved from the location of the pyroxene crystal field bands (Band I with a maximum of absorption around at about 1 μm and Band II around 2 μm). Absolute values of the chemical composition appears however to deviate from the expected chemical composition. We show that mechanical mixture (i.e. impact gardening) will produce a linear mixing in the pyroxenes band position diagram (Band I position vs Band II position). This diagram also reveals that howardite are not pure mixtures of an average eucrite and average diogenite. Because asteroid surfaces are expected to show topography, we also study the effect of observation geometry on the NIR spectra of an eucrite and a diogenite by measuring the bi-directional reflectance spectra from 0.4 to 4.6 μm. Results show that these meteorites tend to act as forward scatterers, leading to a decrease of integrated band area (relative to the continuum) at high phase angles. The position of the two strong crystal field bands shows only small variability with observation geometry. Retrieval of the magmatic trends from the Band I vs Band II diagram should not be affected by observation geometry effects. Finally we performed NIR reflectance measurement on olivine diogenites. The presence of olivine can be suggested by using the Band Area Ratio vs Band I diagram, but this phase might affect the retrieval of pyroxene composition from the position of Band I and Band II.  相似文献   
62.
综述了非球陨石(铁陨石,石铁陨石和无球粒陨石)在成分结构方面的非分异成因证据,推断其成因是:星云盘中心层中的星云发生气-液凝聚作用形成的熔滴,在较高温度下彼此合并形成了较大熔体,熔体固化后形成该类陨石母体。根据C1陨石不含球粒和其它成分特征,推断它们是星云只发生气-固凝聚作用的产物。对近年来新发现的一些特殊成分的碳质球粒陨石进行了综合分析,暂定名为类C1陨石。通过类C1陨石与其它球粒陨石及C1陨石成分结构特征的对比,推断它们是星云盘边缘层星云发生气-液-固和气-固联合凝聚作用,同时发生水化作用的产物。最后,在对所有陨石凝聚成因进行解释的基础上,建立了小行星区星云凝聚模型。  相似文献   
63.
After several decades of frustrating results showing a generally poor agreement among different asteroid family classifications, recent studies based on high accuracy proper elements, as well as on objective statistical methods of cluster analysis have largely improved the situation. Now, a number of asteroid families have been recognized on the basis of different methods of cluster analysis, using asteroid proper elements data sets computed by means of different theories. For these reasons, they should be considered of very high reliability. Moreover, spectroscopic observations confirm in some cases these results, indicating surface compositions of the family members in agreement with a geochemically plausible parent body. However, in particular zones of the belt, like the Flora region, further efforts should be performed in order to establish the real consistence of the resulting clusterings of objects. In addition, the size distribution and the taxonomic types of some well established families seem to indicate particular features of the family sample when compared with the field objects. We recall that asteroid families, in the framework of asteroid collisional evolution, are of the highest importance for understanding the mechanisms of injection of fragments into the Earth-crossing zone through mean-motion and secular resonances and, as a consequence, for evaluating the impact rate on Earth of asteroidal objects.  相似文献   
64.
Lucy F. Lim  Larry R. Nittler 《Icarus》2009,200(1):129-146
We present a new calibration of the elemental-abundance data for Asteroid 433 Eros taken by the X-ray spectrometer (XRS) aboard the NEAR-Shoemaker spacecraft. (NEAR is an acronym for “Near-Earth Asteroid Rendezvous.”) Quantification of the asteroid surface elemental abundance ratios depends critically on accurate knowledge of the incident solar X-ray spectrum, which was monitored simultaneously with asteroid observations. Previously published results suffered from incompletely characterized systematic uncertainties due to an imperfect ground calibration of the NEAR gas solar monitor. The solar monitor response function and associated uncertainties have now been characterized by cross-calibration of a large sample of NEAR solar monitor flight data against contemporary broadband solar X-ray data from the Earth-orbiting GOES-8 (Geostationary Operational Environmental Satellite). The results have been used to analyze XRS spectra acquired from Eros during eight major solar flares (including three that have not previously been reported). The end product of this analysis is a revised set of Eros surface elemental abundance ratios with new error estimates that more accurately reflect the remaining uncertainties in the solar flare spectra: Mg/Si=0.753+0.078/−0.055, Al/Si=0.069±0.055, S/Si=0.005±0.008, Ca/Si=0.060+0.023/−0.024, and Fe/Si=1.678+0.338/−0.320. These revised abundance ratios are consistent within cited uncertainties with the results of Nittler et al. [Nittler, L.R., and 14 colleagues, 2001. Meteorit. Planet. Sci. 36, 1673-1695] and thus support the prior conclusions that 433 Eros has a major-element composition similar to ordinary chondrites with the exception of a strong depletion in sulfur, most likely caused by space weathering.  相似文献   
65.
Scaling forces to asteroid surfaces: The role of cohesion   总被引:1,自引:0,他引:1  
The scaling of physical forces to the extremely low ambient gravitational acceleration regimes found on the surfaces of small asteroids is performed. Resulting from this, it is found that van der Waals cohesive forces between regolith grains on asteroid surfaces should be a dominant force and compete with particle weights and be greater, in general, than electrostatic and solar radiation pressure forces. Based on this scaling, we interpret previous experiments performed on cohesive powders in the terrestrial environment as being relevant for the understanding of processes on asteroid surfaces. The implications of these terrestrial experiments for interpreting observations of asteroid surfaces and macro-porosity are considered, and yield interpretations that differ from previously assumed processes for these environments. Based on this understanding, we propose a new model for the end state of small, rapidly rotating asteroids which allows them to be comprised of relatively fine regolith grains held together by van der Waals cohesive forces.  相似文献   
66.
Vesta, the second largest Main-Belt Asteroid, will be the first to be explored in 2011 by NASA’s Dawn mission. It is a dry, likely differentiated body with spectrum suggesting that is has been resurfaced by basaltic lava flows, not too different from the lunar maria.Here we present the first disk-resolved spectroscopic observations of an asteroid from the ground. We observed (4) Vesta with the ESO-VLT adaptive optics equipped integral-field near-infrared spectrograph SINFONI, as part of its science verification campaign. The highest spatial resolution of ∼90 km on Vesta’s surface was obtained during excellent seeing conditions (0.5) in October 2004.We observe spectral variations across Vesta’ surface that can be interpreted as variations of either the pyroxene composition, or the effect of surface aging. We compare Vesta’s 2 μm absorption band to that of howardite-eucrite-diogenite (HED) meteorites that are thought to originate from Vesta, and establish particular links between specific regions and HED subclasses. The overall composition is found to be mostly compatible with howardite meteorites, although a small area around 180°E longitude could be attributed to a diogenite-rich spot. We finally focus our spectral analysis on the characteristics of Vesta’s bright and dark regions as seen from Hubble Space Telescope’s visible and Keck-II’s near-infrared images.  相似文献   
67.
Spectroscopic observations of Asteroid (4) Vesta and numerous members of the Vesta family located in the inner asteroid belt have determined that these objects have reflectance properties of basaltic material. A plausible hypothesis is that the surface of Vesta was punctured by large impacts in the past which dispersed fragments of its basaltic crust into space and produced one of the most prominent asteroid families ever created in the belt. Until recently, Vesta was the only known object in the asteroid belt which underwent differentiation and survived to the present epoch. Since 2000, many new small basaltic asteroids have been discovered in the inner and outer parts of the asteroid belt, possibly representing fragments from distinct differentiated bodies. These discoveries may help us to better understand the number and nature of objects in the inner Solar System that underwent geological differentiation. To investigate these issues we performed extensive numerical simulations whose aim was to reproduce, as precisely as possible, the dynamical evolution of Vesta's ejected fragments over timescales comparable to the family's age. Specifically, we numerically integrated the orbital evolution of 6600 test bodies with orbits that started within the Vesta family and dynamically evolved over 2 Gy. Our model included gravitational perturbation of all planets (except Mercury) and the Yarkovsky effect. The results show that a relatively large fraction of the original Vesta family members may have evolved out of the family borders defined by clustering algorithms and are now dispersed over the inner asteroid belt. We compared the orbital distribution of our model fragments with the orbital locations of known basaltic asteroids in various parts of the inner main belt to find that: (i) Most basaltic asteroids with semimajor axis located outside the Vesta family's borders in the inner main belt, including (809) Lundia and (956) Elisa, are most likely fugitives from the Vesta family that have evolved to their current orbits via various identified dynamical pathways. Our results also suggest that the Vesta family is at least ∼1 Gy old. (ii) Interestingly, orbits of many basaltic asteroids with , like those of (4796) Lewis and (5379) Abehiroshi, are displaced from the Vesta family to low inclinations and are not obtained in our simulations with sufficient efficiency. We propose that: (i) these small basaltic asteroids may be fragments of differentiated bodies other than (4) Vesta; or (ii) they were liberated from the Vesta's surface before (or during) the Late Heavy Bombardment epoch ∼3.8 Gy ago and their orbital inclinations separated from that of Vesta when secular resonances swept through the region.  相似文献   
68.
The International Astronomical Union recently adopted a new definition of planets in our Solar System. A new category of objects was introduced: a “dwarf planet.” This is “a celestial body that has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape and has not cleared the neighborhood around its orbit.” In a footnote, the resolution says: “An IAU process will be established to assign borderline objects into either “dwarf planet” and other categories." In order to contribute to the establishment of this classification procedure, we analyze the problem of the minimum mass required to become a “dwarf planet,” either from the theoretical and the observational perspective. We propose classification criteria for “dwarf planets” based on the available information on the shape and size of asteroids and TNOs, principally the direct or indirect estimates of the diameter and the estimate of the shapes from the lightcurves. We compile the available observational data on large asteroids and TNOs. According to our classification scheme there is only one rocky “dwarf planet” and 12 icy “dwarf planets” among the already discovered objects.  相似文献   
69.
The X-ray spectrometer of the Near-Earth Asteroid Rendezvous (NEAR) mission discovered a low abundance of sulfur on the surface of asteroid Eros, which is seemingly inconsistent with the match of the overall surface composition to that of ordinary chondrites. Since troilite, FeS, is the primary sulfur-bearing mineral in ordinary chondrites, we investigated the hypothesis that sulfur loss from surface FeS could result from ‘space weathering’ by impact of solar wind ions and micrometeorites. We performed laboratory studies on the chemical alteration of FeS by 4 keV ions simulating exposure to the solar wind and by nanosecond laser pulses simulating pulsed heating by micrometeorite impact. We found that the combination of laser irradiation followed by ion impact lowers the S:Fe atomic ratio on the surface by a factor of up to 2.5, which is consistent with the value of at least 1.5 deduced from the NEAR measurements. Thus, our results support the hypothesis that the low abundance of sulfur at the surface of Eros is caused by space weathering.  相似文献   
70.
Observations and results of orbit determination of the first known Mars Trojan asteroid (5261) Eureka are presented. We have numerically calculated the evolution of the orbital elements, and have analyzed the behavior of the motion during the next 2 Myr. Strong perturbations by planets other than Mars seem to stabilize the eccentricity of the asteroid by stirring the high order resonances present in the elliptic restricted problem. As a result, the orbit appears stable at least on megayear timescales. The difference of the mean longitudes of Mars and Eureka and the semimajor axis of the asteroid form a pair of variables that essentially behave in an adiabatic manner, while the evolution of the other orbital elements is largely determined by the perturbations due to other planets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号