首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   2篇
  国内免费   1篇
地球物理   2篇
地质学   12篇
天文学   100篇
自然地理   1篇
  2019年   2篇
  2018年   1篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2011年   11篇
  2010年   18篇
  2009年   15篇
  2008年   17篇
  2007年   6篇
  2006年   2篇
  2005年   3篇
  2004年   10篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1990年   1篇
  1985年   1篇
排序方式: 共有115条查询结果,搜索用时 140 毫秒
51.
A nonlinear theory of secular resonances is developed. Both terms corresponding to secular resonances 5 and 6 are taken into account in the Hamiltonian. The simple overlap criterion is applied and the condition for the overlap of these resonances is found. It is shown that in given approximation the value p = (1 - e2)1/2(1 - cosI) is an integral of motion, where the mean eccentricity e and mean inclination I are obtained by eliminating short-period perturbations as well as the nonresonant terms from the planets. The overlap criterion yields a critical value of parameter p depending on the semi-major axis a of the asteroid. For p greater than the critical value, resonance overlap occurs and chaotic motion has to be expected. A mapping is presented for fast calculation of the trajectories. The results are illustrated by level curves in surfaces of section method.  相似文献   
52.
The hydrogen sulfide rich waters of the Black Sea pose a potential danger for the surrounding land regions. The impact of an asteroid exceeding tens of meters in size may cause both a tsunami wave and a catastrophic poisonous gas release in the atmosphere. Some effects of this last phenomenon on the Southern Black Sea coastal regions are evaluated in this paper. The initial surface area of the poisonous cloud depends on asteroid size. The initial thickness of the cloud depends, in addition, on sea depth at impact location. The wind speed plays an important role in H2S cloud dynamics. At 10 m/s wind speed, the cloud margins reach 185 km from the impact location in about 3 h. The maximum distance traveled by the hydrogen sulfide cloud increases by increasing the asteroid size and wind speed. The influence of the impact position on the distance traveled by hydrogen sulfide clouds is rather weak, as long as the seawater depth does not change significantly. The land surface area covered by the H2S cloud generated by a 1,000 m size asteroid ranges between about 6,400 and 12,000 km2. This may affect up to 3,000,000 people. When a 250 m size asteroid is considered, the covered land surface area ranges between about 1,400 and 2,100 km2 and up to 120,000 people may be affected. In case of a 70 m size asteroid, the cloud covers up to 280 km2 of land. This may affect up to about 70,000 people. These evaluations do not include the population of the towns on or near the seashore. A simple methodology to estimate the environmental risks of the potential asteroid impact was proposed. Sites less than 160 km from the impact place are at risk.  相似文献   
53.
We report the first detection of a fragment of Asteroid (4) Vesta’s mantle in the near-Earth and main belt Vestoid populations. The near-infrared (NIR) spectrum of near-Earth Asteroid (237442) 1999 TA10 shows band parameters, and inferred surface mineralogy, and pyroxene chemistry, similar to diogenite meteorites, which are believed to be fragments of (4) Vesta’s upper mantle. This strongly indicates that the impact that led to the excavation of 1999 TA10 was deep enough to sample Vesta’s upper mantle and provides constraints on Vesta’s internal structure that can be verified by the Dawn mission.  相似文献   
54.
At present, approximately 1500 asteroids are known to evolve inside or sticked to the exterior 1:2 resonance with Mars at a ? 2.418 AU, being (142) Polana the largest member of this group. The effect of the forced secular modes superposed to the resonance gives rise to a complex dynamical evolution. Chaotic diffusion, collisions, close encounters with massive asteroids and mainly orbital migration due to the Yarkovsky effect generate continuous captures to and losses from the resonance, with a fraction of asteroids remaining captured over long time scales and generating a concentration in the semimajor axis distribution that exceeds by 20% the population of background asteroids. The Yarkovsky effect induces different dynamics according to the asteroid size, producing an excess of small asteroids inside the resonance. The evolution in the resonance generates a signature on the orbits, mainly in eccentricity, that depends on the time the asteroid remains captured inside the resonance and on the magnitude of the Yarkovsky effect. The greater the asteroids, the larger the time they remain captured in the resonance, allowing greater diffusion in eccentricity and inclination. The resonance generates a discontinuity and mixing in the space of proper elements producing misidentification of dynamical family members, mainly for Vesta and Nysa-Polana families. The half-life of resonant asteroids large enough for not being affected by the Yarkovsky effect is about 1 Gyr. From the point of view of taxonomic classes, the resonant population does not differ from the background population and the excess of small asteroids is confirmed.  相似文献   
55.
The Howardite–Eucrite–Diogenite (HED) suite is a family of differentiated meteorites that provide a unique opportunity to study the differentiation of small bodies. The likely parent-body of this meteorite group, (4) Vesta is presently under study by the Dawn mission, scrutinizing its surface in the visible and NIR infrared range. Here, we discuss how well the magmatic trends observed in HED might be retrieved from NIR spectroscopy, by studying laboratory spectra of 10 HED meteorites together with spectra from the RELAB database. We show that although an exsolution process did occur for most eucrites (i.e. decomposition of a primary calcic pyroxene into a high-Ca and low-Ca pyroxene), it does not affect the “bulk pyroxene” trend retrieved from the location of the pyroxene crystal field bands (Band I with a maximum of absorption around at about 1 μm and Band II around 2 μm). Absolute values of the chemical composition appears however to deviate from the expected chemical composition. We show that mechanical mixture (i.e. impact gardening) will produce a linear mixing in the pyroxenes band position diagram (Band I position vs Band II position). This diagram also reveals that howardite are not pure mixtures of an average eucrite and average diogenite. Because asteroid surfaces are expected to show topography, we also study the effect of observation geometry on the NIR spectra of an eucrite and a diogenite by measuring the bi-directional reflectance spectra from 0.4 to 4.6 μm. Results show that these meteorites tend to act as forward scatterers, leading to a decrease of integrated band area (relative to the continuum) at high phase angles. The position of the two strong crystal field bands shows only small variability with observation geometry. Retrieval of the magmatic trends from the Band I vs Band II diagram should not be affected by observation geometry effects. Finally we performed NIR reflectance measurement on olivine diogenites. The presence of olivine can be suggested by using the Band Area Ratio vs Band I diagram, but this phase might affect the retrieval of pyroxene composition from the position of Band I and Band II.  相似文献   
56.
Silicate-bearing iron meteorites differ from other iron meteorites in containing variable amounts of silicates, ranging from minor to stony-iron proportions (∼50%). These irons provide important constraints on the evolution of planetesimals and asteroids, especially with regard to the nature of metal–silicate separation and mixing. I present a review and synthesis of available data, including a compilation and interpretation of host metal trace-element compositions, oxygen-isotope compositions, textures, mineralogy, phase chemistries, and bulk compositions of silicate portions, ages of silicate and metal portions, and thermal histories. Case studies for the petrogeneses of igneous silicate lithologies from different groups are provided. Silicate-bearing irons were formed on multiple parent bodies under different conditions. The IAB/IIICD irons have silicates that are mainly chondritic in composition, but include some igneous lithologies, and were derived from a volatile-rich asteroid that underwent small amounts of silicate partial melting but larger amounts of metallic melting. A large proportion of IIE irons contain fractionated alkali-silica-rich inclusions formed as partial melts of chondrite, although other IIE irons have silicates of chondritic composition. The IIEs were derived from an H-chondrite-like asteroid that experienced more significant melting than the IAB asteroid. The two stony-iron IVAs were derived from an extensively melted and apparently chemically processed L or LL-like asteroid that also produced a metallic core. Ungrouped silicate-bearing irons were derived from seven additional asteroids. Hf–W age data imply that metal–silicate separation occurred within 0–10 Ma of CAI formation for these irons, suggesting internal heating by 26Al. Chronometers were partly re-set at later times, mainly earlier for the IABs and later for the IIEs, including one late (3.60 ± 0.15 Ga) strong impact that affected the “young silicate” IIEs Watson (unfractionated silicate, and probable impact melt), Netschaëvo (unfractionated, and metamorphosed), and Kodaikanal (fractionated). Kodaikanal probably did not undergo differentiation in this late impact, but the similar ages of the “young silicate” IIEs imply that relatively undifferentiated and differentiated materials co-existed on the same asteroid. The thermal histories and petrogeneses of fractionated IIE irons and IVA stony irons are best accommodated by a model of disruption and reassembly of partly molten asteroids.  相似文献   
57.
The international Rosetta mission, a cornerstone mission of the european space agency scientific Programme, was launched on 2nd March 2004 on its 10 years journey towards a rendezvous with comet Churyumov-Gerasimenko (Gardini et al., 1999). During its interplanetary flight towards its target Rosetta crosses the asteroid belt twice with the opportunity to observe at close quarters two asteroids: (2867)-Šteins in 2008 and (21)-Lutetia in 2010. The spacecraft design was such that these opportunities could be fully exploited to deliver valuable data to the scientific community. The mission trajectory was controlled such that Rosetta would fly next to asteroid Šteins on the 5th of September 2008 with a relative speed of 8.6 km/s at a minimum distance of 800 km. Mission operations have been carefully planned to achieve the best possible flyby scenario and scientific outcome. The flyby scenario, the optical navigation campaign, and the planning of the scientific observations had to be adapted by the Mission and the Science Operations Centres to the demanding requirements expressed by the scientific community. The flyby was conducted as planned with a large number of successful observations.  相似文献   
58.
Space-based observatories have several advantages over ground-based observatories in searching for asteroids and comets. In particular, the Aten and Interior to Earth’s Orbit (IEO) asteroid classes may be efficiently sought at low solar elongations along the ecliptic plane. A telescope in low Earth orbit has a sufficiently long orbital baseline to determine the parallax for all Aten and IEO class asteroids discovered with this observing strategy. The Near Earth Object Space Surveillance Satellite (NEOSSat) mission will launch a microsatellite to exploit this observing strategy complementing ground-based search programmes.  相似文献   
59.
Asteroid families are products of catastrophic collisions, and their properties are a very important input for modelling the physics which governs these phenomena. A deep change in the interpretation of the available data on families, after a first extensive set of analyses carried out after 1990, is currently proposed by several authors. This is mainly due to the recognition of the importance of the Yarkovsky effect as a powerful mechanism of evolution of asteroids' orbits. Moreover, also the most recent results of hydrocode simulations of catastrophic collision phenomena can hardly be reconciled with family data in the absence of mechanisms of evolution of the orbits. A new general scheme of interpretation, which is in several respects opposite with respect to earlier ideas developed without consideration of a Yarkovsky-driven evolution, is emerging. However, it is not yet fully clear to what extent earlier interpretations of family properties are really wrong, and a synthesis of pre-Yarkovsky and post-Yarkovsky interpretations is probably needed. The current situation is briefly reviewed.  相似文献   
60.
After several decades of frustrating results showing a generally poor agreement among different asteroid family classifications, recent studies based on high accuracy proper elements, as well as on objective statistical methods of cluster analysis have largely improved the situation. Now, a number of asteroid families have been recognized on the basis of different methods of cluster analysis, using asteroid proper elements data sets computed by means of different theories. For these reasons, they should be considered of very high reliability. Moreover, spectroscopic observations confirm in some cases these results, indicating surface compositions of the family members in agreement with a geochemically plausible parent body. However, in particular zones of the belt, like the Flora region, further efforts should be performed in order to establish the real consistence of the resulting clusterings of objects. In addition, the size distribution and the taxonomic types of some well established families seem to indicate particular features of the family sample when compared with the field objects. We recall that asteroid families, in the framework of asteroid collisional evolution, are of the highest importance for understanding the mechanisms of injection of fragments into the Earth-crossing zone through mean-motion and secular resonances and, as a consequence, for evaluating the impact rate on Earth of asteroidal objects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号