首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   19篇
  国内免费   14篇
测绘学   133篇
大气科学   14篇
地球物理   43篇
地质学   23篇
海洋学   4篇
天文学   10篇
综合类   6篇
自然地理   9篇
  2022年   5篇
  2020年   7篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   6篇
  2014年   16篇
  2013年   19篇
  2012年   5篇
  2011年   15篇
  2010年   5篇
  2009年   14篇
  2008年   13篇
  2007年   7篇
  2006年   16篇
  2005年   14篇
  2004年   6篇
  2003年   4篇
  2002年   6篇
  2001年   4篇
  2000年   5篇
  1999年   9篇
  1998年   13篇
  1997年   8篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1993年   5篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   5篇
  1985年   1篇
排序方式: 共有242条查询结果,搜索用时 46 毫秒
21.
空间直角坐标和大地坐标的转换   总被引:5,自引:0,他引:5  
目前国内在空间直角坐标和大地坐标转换公式使用问题上 ,还明显缺乏必要的统一性。针对这个问题 ,本文作者在全面分析和比较国内外现有各种转换方法的基础上 ,重点推荐和介绍根据 Bowring研究思路导出的转换公式 ,这组公式既简单又具有很高的计算精度 ,能够满足各个部门的使用要求  相似文献   
22.
We presented a multiresolution hierarchical classification (MHC) algorithm for differentiating ground from non-ground LiDAR point cloud based on point residuals from the interpolated raster surface. MHC includes three levels of hierarchy, with the simultaneous increase of cell resolution and residual threshold from the low to the high level of the hierarchy. At each level, the surface is iteratively interpolated towards the ground using thin plate spline (TPS) until no ground points are classified, and the classified ground points are used to update the surface in the next iteration. 15 groups of benchmark dataset, provided by the International Society for Photogrammetry and Remote Sensing (ISPRS) commission, were used to compare the performance of MHC with those of the 17 other publicized filtering methods. Results indicated that MHC with the average total error and average Cohen’s kappa coefficient of 4.11% and 86.27% performs better than all other filtering methods.  相似文献   
23.
Many municipal activities require updated large-scale maps that include both topographic and thematic information. For this purpose, the efficient use of very high spatial resolution (VHR) satellite imagery suggests the development of approaches that enable a timely discrimination, counting and delineation of urban elements according to legal technical specifications and quality standards. Therefore, the nature of this data source and expanding range of applications calls for objective methods and quantitative metrics to assess the quality of the extracted information which go beyond traditional thematic accuracy alone. The present work concerns the development and testing of a new approach for using technical mapping standards in the quality assessment of buildings automatically extracted from VHR satellite imagery. Feature extraction software was employed to map buildings present in a pansharpened QuickBird image of Lisbon. Quality assessment was exhaustive and involved comparisons of extracted features against a reference data set, introducing cartographic constraints from scales 1:1000, 1:5000, and 1:10,000. The spatial data quality elements subject to evaluation were: thematic (attribute) accuracy, completeness, and geometric quality assessed based on planimetric deviation from the reference map. Tests were developed and metrics analyzed considering thresholds and standards for the large mapping scales most frequently used by municipalities. Results show that values for completeness varied with mapping scales and were only slightly superior for scale 1:10,000. Concerning the geometric quality, a large percentage of extracted features met the strict topographic standards of planimetric deviation for scale 1:10,000, while no buildings were compliant with the specification for scale 1:1000.  相似文献   
24.
The validation of satellite ocean-color products is an important task of ocean-color missions. The uncertainties of these products are poorly quantified in the Yellow Sea (YS) and East China Sea (ECS), which are well known for their optical complexity and turbidity in terms of both oceanic and atmospheric optical properties. The objective of this paper is to evaluate the primary ocean-color products from three major ocean-color satellites, namely the Moderate Resolution Imaging Spectroradiometer (MODIS), Medium Resolution Imaging Spectrometer (MERIS), and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Through match-up analysis with in situ data, it is found that satellite retrievals of the spectral remote sensing reflectance Rrs(λ) at the blue-green and green bands from MERIS, MODIS and SeaWiFS have the lowest uncertainties with a median of the absolute percentage of difference (APDm) of 15–27% and root-mean-square-error (RMS) of 0.0021–0.0039 sr−1, whereas the Rrs(λ) uncertainty at 412 nm is the highest (APDm 47–62%, RMS 0.0027–0.0041 sr−1). The uncertainties of the aerosol optical thickness (AOT) τa, diffuse attenuation coefficient for downward irradiance at 490 nm Kd(490), concentrations of suspended particulate sediment concentration (SPM) and Chlorophyll a (Chl-a) were also quantified. It is demonstrated that with appropriate in-water algorithms specifically developed for turbid waters rather than the standard ones adopted in the operational satellite data processing chain, the uncertainties of satellite-derived properties of Kd(490), SPM, and Chl-a may decrease significantly to the level of 20–30%, which is true for the majority of the study area. This validation activity advocates for (1) the improvement of the atmosphere correction algorithms with the regional aerosol optical model, (2) switching to regional in-water algorithms over turbid coastal waters, and (3) continuous support of the dedicated in situ data collection effort for the validation task.  相似文献   
25.
Synthetic aperture radar (SAR) is an important alternative to optical remote sensing due to its ability to acquire data regardless of weather conditions and day/night cycle. The Phased Array type L-band SAR (PALSAR) onboard the Advanced Land Observing Satellite (ALOS) provided new opportunities for vegetation and land cover mapping. Most previous studies employing PALSAR investigated the use of one or two feature types (e.g. intensity, coherence); however, little effort has been devoted to assessing the simultaneous integration of multiple types of features. In this study, we bridged this gap by evaluating the potential of using numerous metrics expressing four feature types: intensity, polarimetric scattering, interferometric coherence and spatial texture. Our case study was conducted in Central New York State, USA using multitemporal PALSAR imagery from 2010. The land cover classification implemented an ensemble learning algorithm, namely random forest. Accuracies of each classified map produced from different combinations of features were assessed on a pixel-by-pixel basis using validation data obtained from a stratified random sample. Among the different combinations of feature types evaluated, intensity was the most indispensable because intensity was included in all of the highest accuracy scenarios. However, relative to using only intensity metrics, combining all four feature types increased overall accuracy by 7%. Producer’s and user’s accuracies of the four vegetation classes improved considerably for the best performing combination of features when compared to classifications using only a single feature type.  相似文献   
26.
Deep convection is one of the key components of the Atlantic Meridional Overturning Circulation. The intensity of deep convection (DC) is traditionally estimated as the maximum mixed layer depth (MMLD). In this study, we developed a criterion of the minimum number of casts needed for obtaining the MMLD in the Greenland Sea with a pre-defined accuracy. The criterion depends on convection intensity.For gridded datasets, we introduce a complementary measure for the DC intensity: the area of the region with the mixed layer depth over a predefined value (800 m for the Greenland Sea, notated as S800). For a weak or a moderate DC, variations of its intensity is more clear from variations of the MMLD (cluster 1 in the MMLD - S800 parameter space). Then the MMLD can be obtained with the 25 % accuracy for at minimum 40 casts during winter. For a well developed DC (cluster 2), variations of the DC intensity are better accessed from variations of S800 and minimum 10 casts are required.In the central Greenland Sea, the number of casts is sufficient for obtaining the interannual variations of the convection intensity only since 1986. If only Argo floats are available, minimum 4 floats should simultaneously operate in the Greenland Sea gyre during winter to reach the abovementioned accuracy. Up to present, the number of floats has been insufficient during most of the winters.  相似文献   
27.
Since the advent of CHAMP, the first in a series of low-altitude satellites being almost continuously and precisely tracked by GPS, a new generation of long-wavelength gravitational geopotential models can be derived. The accuracy evaluation of these models depends to a large extent on the comparison with external data of comparable quality. Here, two CHAMP-derived models, EIGEN-1S and EIGEN-2, are tested with independent long-term-averaged single satellite crossover (SSC) sea heights from three altimetric satellites (ERS-1, ERS-2 and Geosat). The analyses show that long-term averages of crossover residuals still are powerful data to test CHAMP gravity field models. The new models are tested in the spatial domain with the aid of ERS-1/-2 and Geosat SSCs, and in the spectral domain with latitude-lumped coefficient (LLC) corrections derived from the SSCs. The LLC corrections allow a representation of the satellite-orbit-specific error spectra per order of the models spherical harmonic coefficients. These observed LLC corrections are compared to the LLC projections from the models variance–covariance matrix. The excessively large LLC errors at order 2 found in the case of EIGEN-2 with the ERS data are discussed. The degree-dependent scaling factors for the variance-covariance matrices of EIGEN-1S and –2, applied to obtain more realistic error estimates of the solved-for coefficients, are compatible with the results found here.  相似文献   
28.
Commonly, the variance-covariance (VCV) matrix derived from GPS processing software underestimates the magnitude of the error, mainly due to the fact that physical correlations are normally neglected. The GAMIT and Bernese software packages serve the scientific community as important tools for GPS measurement processing and analyzing, especially in precise applications. Therefore, the reliability of the VCV matrices derived by the GAMIT and Bernese packages is of great importance. Formal accuracies derived from both software need to be scaled by applying a scaling factor (SF) that multiplies the software-derived formal errors. However, to the best of our knowledge, no standard approach approved by the GPS community exists. In this report, an analysis is carried out in order to test the reliability and the validity of the VCV matrices in both software, and to provide SFs needed to calculate the realistic accuracies reflecting the actual error levels. The method applied in this study allows deriving SFs for formal accuracies obtained from GAMIT and Bernese. The results attained from the time series of eight days for eight baselines (lengths of 20–415 km) indicate that the overall SF for GAMIT is more than 10 times smaller than for Bernese (1.9 and 23.0, respectively). Although no distance-dependent SF was detected in either case, the session-duration dependence was detected for the Bernese software, while no clear session-duration dependence was observed for the GAMIT. Furthermore, no receiver/antenna dependence could be deduced from the results of this analysis.  相似文献   
29.
介绍了三线阵数码航摄仪ADS 80,探讨了其Level 0级影像的后处理技术,分析了不同软件在相同地面分辨率下不同地面控制条件下的后处理精度。得出的结论是控制点分布、数量、位置和航摄影像地面分辨率对ADS 80相机L0级影像空三解算和生成的L1级影像精度影响较大;在充分考虑以上因素的情况下,ADS 80相机在获取的航摄影像地面分辨率低于成图比例尺要求时仍能得到较高的校正精度。  相似文献   
30.
对绝对差分算法检测太阳边缘的起伏测量白日视宁度的方法进行了研究,并对绝对差分的结果进行二阶拟合使之可以达到亚像素的检测精度。对可能的影响因素如噪声和像差等进行了分析和数值模拟,算法的精度优于0.1”。模拟结果表明,采用绝对差分算法可以对白日视宁度进行高精度的测量,最后用绝对差分算法对实际数据进行了处理,给出了初步结果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号