首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
  国内免费   2篇
大气科学   2篇
地球物理   2篇
海洋学   6篇
天文学   24篇
自然地理   1篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2009年   3篇
  2008年   5篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
11.
We perform numerical simulations to explore the dynamical evolution of the HD 82943 planetary system. By simulating diverse planetary configurations, we find two mechanisms of stabilizing the system: the 2:1 mean motion resonance (MMR) between the two planets can act as the first mechanism for all stable orbits. The second mechanism is a dynamical antialignment of the apsidal lines of the orbiting planets, which implies that the difference of the periastron longitudes 3 librates about 180° in the simulations. We also use a semi-analytical model to explain the numerical results for the system under study.  相似文献   
12.
The ejection velocities of meteoroids belonging to the Leonid and Perseid meteoroid streams are deduced from the observed differences between the longitude of the ascending node of the outburst meteoroids and that of the parent comet. The difference is very sensitive to the true anomaly of the ejection point, as well as the ejection velocity, and probable values for both are discussed.  相似文献   
13.
Photographic multi-station observations of 18 Leonid meteorsobtained by the Spanish Photographic Meteor Network are presented. For each meteoroidthe radiant position, trajectory data and orbital parameters are discussed and compared totheoretical radiant positions and orbital elements of particles ejected from 55P/Tempel–Tuttle in 1899.We discuss the role of mean velocity imprecision in the dispersion of some orbital parameters,specially the semimajor axis. Finally, by applying the dust trail theory we have adjusted the1999 Leonidstorm orbits to a defined semimajor axis value to test the quality of photographic observations.  相似文献   
14.
15.
We interpret the historical activity of comet 55P/Tempel–Tuttle in terms of the observed characteristics of present-day short period comets. In this respect, it is now realized that such comets are liable to undergo significant outburst and mantle loss events at intervals separated by of order a few hundred years. On this basis one might well expect comet 55P/Tempel–Tuttle to have undergone several outbursts since its earliest sighing in 1366. The limited absolute magnitude data available for 55P/Tempel–Tuttle is not inconsistent with the suggestion that the comet underwent outbursts during its 1699 and 1865 perihelion returns. If the outbursts of comet 55P/Tempel–Tuttle are interpreted in terms of mantle loss events then the bright, electrophonic sound producing fireballs reported during the great Leonid meteor storm of 1833 may have been due to the Earth sampling mantle material ejected during the outburst of 1699. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
16.
17.
18.
Most astronomers expected a significant meteor shower associated with the Leonid meteoroid stream to appear in 1998 and 1999. An enhanced shower was widely observed in both years, and details can be found in many published articles. In 1998, one remarkable feature was the appearance of a strong component, rich in bright meteors, which appeared about 16 h before the expected maximum of the main shower, but another observed feature was an abnormal peak in the ionosphere characteristic value f b E s which was detected about 18 h after the main shower. A very high value of f b E s persisted for over an hour. The likely explanation is that the ionosphere was bombarded by an additional swarm of meteoroids, much smaller than those that produce a visible trail or an ionization trail that can be picked up by radio detectors. The different dynamical behaviours between small and large meteoroids are investigated and, in consequence, an explanation for the observed phenomena is offered and 1933 is suggested as being the likely ejection time.  相似文献   
19.
A new scheme for simulating meteor showers is introduced, based on a hybridization of current numerical modelling techniques. It involves an iterative method that generates particles which hit a real-scale Earth, removing the spatial and temporal blurring common to other modelling techniques. The scheme is applied to the activity profile of the Leonids 2001 using three different models of meteoroid ejection velocity and then applied to the Leonids 1998–2000 using the most favourable models. It is shown that to reproduce the observed meteor activity profiles there must be a strong concentration of ejection around perihelion. The modelling also implies that meteoroid density must be towards the higher end of the currently acceptable range, although the derived limits are not independent of the ejection velocity model. We also find that the extreme narrowness of Leonid activity peaks is not easily reproduced with outgassing over the entire day side of the comet but it is fitted well by outgassing in a restricted direction as one would expect from an outgassing jet. In addition, we show that double-peaked features, corresponding to a semihollow meteoroid streamlet, can arise in a meteor shower activity profile from outgassing during a single perihelion passage of the parent comet. It is suggested that this process caused the double-peaked feature in the first maxima of the 2001 Leonids.  相似文献   
20.
Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of  ∼1100 km s−1  , which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of  106– 107 stars pc−3  . Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号