首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19714篇
  免费   554篇
  国内免费   252篇
测绘学   432篇
大气科学   222篇
地球物理   548篇
地质学   1926篇
海洋学   245篇
天文学   16577篇
综合类   82篇
自然地理   488篇
  2024年   41篇
  2023年   79篇
  2022年   147篇
  2021年   92篇
  2020年   96篇
  2019年   161篇
  2018年   57篇
  2017年   46篇
  2016年   71篇
  2015年   169篇
  2014年   141篇
  2013年   133篇
  2012年   208篇
  2011年   242篇
  2010年   275篇
  2009年   1576篇
  2008年   1509篇
  2007年   1773篇
  2006年   1785篇
  2005年   1603篇
  2004年   1737篇
  2003年   1488篇
  2002年   1294篇
  2001年   1148篇
  2000年   928篇
  1999年   896篇
  1998年   1070篇
  1997年   224篇
  1996年   104篇
  1995年   270篇
  1994年   289篇
  1993年   131篇
  1992年   74篇
  1991年   84篇
  1990年   75篇
  1989年   131篇
  1988年   82篇
  1987年   82篇
  1986年   74篇
  1985年   38篇
  1984年   27篇
  1983年   22篇
  1982年   4篇
  1980年   4篇
  1979年   3篇
  1977年   6篇
  1905年   3篇
  1900年   3篇
  1897年   7篇
  1877年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
 The Somigliana–Pizzetti gravity field (the International gravity formula), namely the gravity field of the level ellipsoid (the International Reference Ellipsoid), is derived to the sub-nanoGal accuracy level in order to fulfil the demands of modern gravimetry (absolute gravimeters, super conducting gravimeters, atomic gravimeters). Equations (53), (54) and (59) summarise Somigliana–Pizzetti gravity Γ(φ,u) as a function of Jacobi spheroidal latitude φ and height u to the order ?(10−10 Gal), and Γ(B,H) as a function of Gauss (surface normal) ellipsoidal latitude B and height H to the order ?(10−10 Gal) as determined by GPS (`global problem solver'). Within the test area of the state of Baden-Württemberg, Somigliana–Pizzetti gravity disturbances of an average of 25.452 mGal were produced. Computer programs for an operational application of the new international gravity formula with (L,B,H) or (λ,φ,u) coordinate inputs to a sub-nanoGal level of accuracy are available on the Internet. Received: 23 June 2000 / Accepted: 2 January 2001  相似文献   
992.
 A mathematical model is proposed for adjustment of differential or relative gravity measurements, involving simultaneously instrumental readings, coefficients of the calibration function, and gravity values of selected base stations. Tests were performed with LaCoste and Romberg model G gravimeter measurements for a set of base stations located along a north–south line with 1750 mGal gravity range. This line was linked to nine control stations, where absolute gravity values had been determined by the free-fall method, with an accuracy better than 10 μGal. The model shows good consistence and stability. Results show the possibility of improving the calibration functions of gravimeters, as well as a better estimation of the gravity values, due to the flexibility admitted to the values of the calibration coefficients. Received: 15 November 1999 / Accepted: 31 October 2000  相似文献   
993.
 Activity-based models consider travel as a derived demand from the activities households need to conduct in space and time. Over the last 15 years, computational or rule-based models of activity scheduling have gained increasing interest in time-geography and transportation research. This paper argues that a lack of techniques for deriving rules from empirical data hinders the further development of rule-based systems in this area. To overcome this problem, this paper develops and tests an algorithm for inductively deriving rules from activity-diary data. The decision table formalism is used to exhaustively represent the theoretically possible decision rules that individuals may use in sequencing a given set of activities. Actual activity patterns of individuals are supplied to the system as examples. In an incremental learning process, the system progressively improves on the selection of rules used for reproducing the examples. Computer experiments based on simulated data are performed to fine-tune rule selection and rule value update functions. The results suggest that the system is effective and fairly robust for parameter settings. It is concluded, therefore, that the proposed approach opens up possibilities to derive empirically tested rule-based models of activity scheduling. Follow-up research will be concerned with testing the system on empirical data. Received: 31 January 2001 / Accepted: 13 September 2001  相似文献   
994.
 The use of GPS for height control in an area with existing levelling data requires the determination of a local geoid and the bias between the local levelling datum and the one implicitly defined when computing the local geoid. If only scarse gravity data are available, the heights of new data may be collected rapidly by determining the ellipsoidal height by GPS and not using orthometric heights. Hence the geoid determination has to be based on gravity disturbances contingently combined with gravity anomalies. Furthermore, existing GPS/levelling data may also be used in the geoid determination if a suitable general gravity field modelling method (such as least-squares collocation, LSC) is applied. A comparison has been made in the Aswan Dam area between geoids determined using fast Fourier transform (FFT) with gravity disturbances exclusively and LSC using only the gravity disturbances and the disturbances combined with GPS/levelling data. The EGM96 spherical harmonic model was in all cases used in a remove–restore mode. A total of 198 gravity disturbances spaced approximately 3 km apart were used, as well as 35 GPS/levelling points in the vicinity and on the Aswan Dam. No data on the Nasser Lake were available. This gave difficulties when using FFT, which requires the use of gridded data. When using exclusively the gravity disturbances, the agreement between the GPS/levelling data were 0.71 ± 0.17 m for FFT and 0.63 ± 0.15 for LSC. When combining gravity disturbances and GPS/levelling, the LSC error estimate was ±0.10 m. In the latter case two bias parameters had to be introduced to account for a possible levelling datum difference between the levelling on the dam and that on the adjacent roads. Received: 14 August 2000 / Accepted: 28 February 2001  相似文献   
995.
Improvements in height datum transfer expected from the GOCE mission   总被引:1,自引:1,他引:1  
 One of the aims of the Earth Explorer Gravity Field and Steady-State Ocean Circulation (GOCE) mission is to provide global and regional models of the Earth's gravity field and of the geoid with high spatial resolution and accuracy. Using the GOCE error model, simulation studies were performed in order to estimate the accuracy of datum transfer in different areas of the Earth. The results showed that with the GOCE error model, the standard deviation of the height anomaly differences is about one order of magnitude better than the corresponding value with the EGM96 error model. As an example, the accuracy of the vertical datum transfer from the tide gauge of Amsterdam to New York was estimated equal to 57 cm when the EGM96 error model was used, while in the case of GOCE error model this accuracy was increased to 6 cm. The geoid undulation difference between the two places is about 76.5 m. Scaling the GOCE errors to the local gravity variance, the estimated accuracy varied between 3 and 7 cm, depending on the scaling model. Received: 1 March 2000 / Accepted: 21 February 2001  相似文献   
996.
 The annual and semiannual residuals derived in the axial angular momentum budget of the solid Earth–atmosphere system reflect significant signals. They must be caused by further excitation sources. Since, in particular, the contribution for the wind term from the atmospheric layer between the 10 and 0.3 hPa levels to the seasonal variations in length of day (LOD) is still missing, it is necessary to extend the top level into the upper stratosphere up to 0.3 hPa. Under the conservation of the total angular momentum of the entire Earth, variations in the oceanic angular momentum (OAM) and the hydrological angular momentum (HAM) are further significant excitation sources at seasonal time scales. Focusing on other contributions to the Earth's axial angular momentum budget, the following data are used in this study: axial atmospheric angular momentum (AAM) data derived for the 10–0.3 hPa layer from 1991 to 1997 for computing the missing wind effects; axial OAM functions as generated by oceanic general circulation models (GCMs), namely for the ECHAM3 and the MICOM models, available from 1975 to 1994 and from 1992 to 1994, respectively, for computing the oceanic contributions to LOD changes, and, concerning the HAM variations, the seasonal estimates of the hydrological contribution as derived by Chao and O'Connor [(1988) Geophys J 94: 263–270]. Using vector representation, it is shown that the vectors achieve a close balance in the global axial angular momentum budget within the estimated uncertainties of the momentum quantities on seasonal time scales. Received: 6 April 2000 / Accepted: 13 December 2000  相似文献   
997.
 The standard analytical approach which is applied for constructing geopotential models OSU86 and earlier ones, is based on reducing the boundary value equation to a sphere enveloping the Earth and then solving it directly with respect to the potential coefficients n,m . In an alternative procedure, developed by Jekeli and used for constructing the models OSU91 and EGM96, at first an ellipsoidal harmonic series is developed for the geopotential and then its coefficients n,m e are transformed to the unknown n,m . The second solution is more exact, but much more complicated. The standard procedure is modified and a new simple integral formula is derived for evaluating the potential coefficients. The efficiency of the standard and new procedures is studied numerically. In these solutions the same input data are used as for constructing high-degree parts of the EGM96 models. From two sets of n,m (n≤360,|m|≤n), derived by the standard and new approaches, different spectral characteristics of the gravity anomaly and the geoid undulation are estimated and then compared with similar characteristics evaluated by Jekeli's approach (`etalon' solution). The new solution appears to be very close to Jekeli's, as opposed to the standard solution. The discrepancies between all the characteristics of the new and `etalon' solutions are smaller than the corresponding discrepancies between two versions of the final geopotential model EGM96, one of them (HDM190) constructed by the block-diagonal least squares (LS) adjustment and the other one (V068) by using Jekeli's approach. On the basis of the derived analytical solution a new simple mathematical model is developed to apply the LS technique for evaluating geopotential coefficients. Received: 12 December 2000 / Accepted: 21 June 2001  相似文献   
998.
Robustness analysis of geodetic horizontal networks   总被引:2,自引:1,他引:2  
  相似文献   
999.
 This research is concerned with developing a bivariate spatial association measure or spatial correlation coefficient, which is intended to capture spatial association among observations in terms of their point-to-point relationships across two spatial patterns. The need for parameterization of the bivariate spatial dependence is precipitated by the realization that aspatial bivariate association measures, such as Pearson's correlation coefficient, do not recognize spatial distributional aspects of data sets. This study devises an L statistic by integrating Pearson's r as an aspatial bivariate association measure and Moran's I as a univariate spatial association measure. The concept of a spatial smoothing scalar (SSS) plays a pivotal role in this task. Received: 07 November 2000 / Accepted: 02 August 2001  相似文献   
1000.
 The topographic and atmospheric effects of gravimetric geoid determination by the modified Stokes formula, which combines terrestrial gravity and a global geopotential model, are presented. Special emphasis is given to the zero- and first-degree effects. The normal potential is defined in the traditional way, such that the disturbing potential in the exterior of the masses contains no zero- and first-degree harmonics. In contrast, it is shown that, as a result of the topographic masses, the gravimetric geoid includes such harmonics of the order of several centimetres. In addition, the atmosphere contributes with a zero-degree harmonic of magnitude within 1 cm. Received: 5 November 1999 / Accepted: 22 January 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号