首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
天文学   3篇
  2006年   3篇
排序方式: 共有3条查询结果,搜索用时 62 毫秒
1
1.
The possibility of terrestrial antineutrino directionality studies is considered for future unloaded liquid scintillator detectors. Monte-Carlo simulations suggest that the measurable displacement between prompt and delayed antineutrino signals makes such studies possible. However, it is estimated that on the order of 1000 terrestrial antineutrino events are required to test the simplest models, demanding detectors of 100 kt size to collect sufficient data in a reasonable period of time.  相似文献   
2.
We consider the detector size, location, depth, background, and radio-purity required of a mid-Pacific deep-ocean instrument to accomplish the twin goals of making a definitive measurement of the electron anti-neutrino flux due to uranium and thorium decays from Earth’s mantle and core, and of testing the hypothesis for a natural nuclear reactor at the core of Earth. We take the experience with the KamLAND detector in Japan as our baseline for sensitivity and background estimates. We conclude that an instrument adequate to accomplish these tasks should have an exposure of at least 10 kilotonne-years (kT-y), should be placed at least at 4 km depth, may be located close to the Hawaiian Islands (no significant background from them), and should aim for KamLAND radio-purity levels, except for radon where it should be improved by a factor of at least 100. With an exposure of 10 kT-y we should achieve a 25% measurement of the flux of U/Th neutrinos from the mantle plus core. Exposure at multiple ocean locations for testing lateral heterogeneity is possible.  相似文献   
3.
A natural nuclear fission reactor operating in the center of the Earth has been proposed by Herndon (Hollenbach and Herndon, 2001) as the energy source that powers the geo-magnetic field. The upper limit on the expected geo-reactor power is set by the estimated 12 TW (Buffett, 2003) heat flow from the Earth’s core. If it exists, a nuclear reactor of that size emits a strong anti-neutrino flux. Emitted electron anti-neutrinos can be detected by the Kamioka liquid scintillator anti-neutrino detector (KamLAND) (Raghavan, 2002), and the geo-reactor power level is proporional to the anti-neutrino emission rate. KamLAND measures the geo-reactor power as a constant positive offset in detected anti-neutrino rate on top of the varying anti-neutrino rate coming from man-made reactors. Here we present the first attempt to measure the geo-reactor power. Based on a 776 ton-year exposure of KamLAND to electron anti-neutrinos, the detected flux corresponds to (6 ± 6) TW. The upper limit on the geo-reactor power at 90% confidence level is 18 TW, which is below the lower limit of the total Earth’s radiogenic heat, estimated to be between 19 and 31TW (Anderson, 2003).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号