首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
天文学   4篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
2.
X-ray observations of Venus are so challenging that the first detection of Venusian X-rays succeeded only in January 2001, with the Chandra satellite. The X-rays from Venus were found to result from fluorescent scattering of solar X-rays in the Venusian thermosphere. An additional component, caused by charge exchange of highly charged heavy ions in the solar wind with atoms in the Venusian exosphere, was suspected, but could not be unambiguously detected. This was hampered by the fact that the observation occurred during solar maximum, when the solar X-ray flux is highest. In order to investigate the presence of an additional charge exchange component, Venus was observed again in March 2006 and October 2007 with Chandra, taking advantage of the fact that the solar X-ray flux had decreased considerably on its way to solar minimum. In fact, these subsequent observations were able to show that also the Venusian exosphere is emitting X-rays, due to its interaction with the solar wind. Here an overview of all the existing X-ray observations of Venus is presented, including first results from the most recent one, which took place after the arrival of Venus Express, providing the first ever opportunity to combine a remote X-ray observation of a planetary exosphere with simultaneous in situ measurements of the solar wind.  相似文献   
3.
Estimates of the total thermal and nonthermal losses of hydrogen and the total nonthermal loss of oxygen from the atmosphere of Mars are discussed, and their ratio is analyzed. It is shown that an H to O ratio of 2:1 has not been achieved in any of the current models of various authors. The closest ratio, H:O = 4:1, has been obtained by Krestyanikova and Shematovich (2006) in the model of formation of a hot oxygen corona.  相似文献   
4.
Using data of the ASPERA-3 instrument on board the European Mars Express spacecraft we investigate the effect of the martian crustal fields on electrons intruding from the magnetosheath. For the crustal field strength we use published data obtained by the Mars Global Surveyor MAG/ER instrument for a fixed altitude of 400 km. We use statistics on 13 months of 80-100 eV electron observations to show that the electron intrusion altitude determined by a probability measure is approximately linearly dependent on the total field strength at 400 km altitude. We show that on the dayside the mean electron intrusion altitude describes the location of the Magnetic Pile-Up Boundary (MPB) such that we can quantify the effect of the crustal fields on the MPB. On the nightside we quantify the shielding of precipitating electrons by the crustal fields.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号