首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8025篇
  免费   1910篇
  国内免费   1746篇
测绘学   222篇
大气科学   1261篇
地球物理   3453篇
地质学   2121篇
海洋学   3153篇
天文学   104篇
综合类   430篇
自然地理   937篇
  2024年   29篇
  2023年   101篇
  2022年   203篇
  2021年   287篇
  2020年   321篇
  2019年   427篇
  2018年   323篇
  2017年   337篇
  2016年   328篇
  2015年   402篇
  2014年   436篇
  2013年   508篇
  2012年   482篇
  2011年   513篇
  2010年   399篇
  2009年   491篇
  2008年   496篇
  2007年   628篇
  2006年   528篇
  2005年   461篇
  2004年   475篇
  2003年   422篇
  2002年   366篇
  2001年   307篇
  2000年   322篇
  1999年   291篇
  1998年   283篇
  1997年   228篇
  1996年   232篇
  1995年   226篇
  1994年   190篇
  1993年   157篇
  1992年   118篇
  1991年   105篇
  1990年   60篇
  1989年   46篇
  1988年   44篇
  1987年   25篇
  1986年   18篇
  1985年   16篇
  1984年   11篇
  1983年   6篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1978年   4篇
  1976年   1篇
  1973年   1篇
  1954年   11篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
91.
关于波浪Boussinesq方程的研究   总被引:2,自引:0,他引:2  
对有关波浪 Boussinesq方程的研究成果进行了系统的归纳总结和评述 ,以期对本学科的发展起到一定的引导和促进作用  相似文献   
92.
We have examined wind-induced circulation in the Sea of Okhotsk using a barotropic model that contains realistic topography with a resolution of 9.25 km. The monthly wind stress field calculated from daily European Centre for Medium-Range Weather Forecasting (ECMWF) Re-Analysis data is used as the forcing, and the integration is carried out for 20 days until the circulation attains an almost steady state. In the case of November (a representative for the winter season from October to March), southward currents of velocity 0.1–0.3 m s−1 occur along the bottom contours off the east of Sakhalin Island. The currents are mostly confined to the shelf (shallower than 200 m) and extend as far south as the Hokkaido coast. In the July case (a representative for the summer season from April to September), significant currents do not occur, even in the shallow shelves. The simulated southward current over the east Sakhalin shelf appears to correspond to the near-shore branch of the East Sakhalin Current (ESC), which was observed with the surface drifters. These seasonal variations simulated in our experiments are consistent with the observations of the ESC. Dynamically, the simulated ESC is interpreted as the arrested topographic wave (ATW), which is the coastally trapped flow driven by steady alongshore wind stress. The volume transport of the simulated ESC over the shelf reaches about 1.0 Sv (1 Sv = 106 m3s−1) in the winter season, which is determined by the integrated onshore Ekman transport in the direction from which shelf waves propagate. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
93.
南海罗斯贝变形半径的地理及季节变化   总被引:3,自引:1,他引:3  
根据南海 1°× 1°网格的标准层季节平均温、盐度资料 ,在未引入Boussinesq近似条件下 ,采用改进的Thompson Haskell算法求解线性化斜压海洋水平大尺度波的垂直结构方程 (重力内波方程 ) ,从而得到了南海各网格点的第一斜压重力波相速度和相应的罗斯贝变形半径 ,并探讨其地理分布和季节变化特征 ,以期有助于南海环流和中尺度涡旋以及有关海洋侧边界效应的研究。  相似文献   
94.
考虑非线性弥散影响的波浪变形数学模型   总被引:3,自引:1,他引:3  
李瑞杰 《海洋学报》2001,23(1):102-108
提出了逼近Kirby和Dalrymple的非线性弥散关系的显式非线性弥散关系的表达式,该显式表达式与他们的非线性弥散关系的精度几乎完全相同.采用显式非线性弥散关系,结合含弱非线性效应的缓坡方程,得到考虑非线性弥散影响的波浪变形数学模型,并对该数学模型进行了数值验证.结果表明,考虑非线性弥散影响的波浪变形数学模型更为精确.  相似文献   
95.
This study aimed to contribute to conservation management of reefs of Serpula vermicularis by increasing understanding of the factors influencing larval settlement. The study was carried out in Loch Creran, which supports the most extensive known development of S. vermicularis reefs in the world. Settlement plates were deployed to examine the influence of season, depth, reef density, substrate type and orientation. Monthly deployment of plates revealed settlement of S. vermicularis to occur predominantly from mid-June to mid-October, peaking in late August to early September. Settlement of Pomatoceros spp. peaked much earlier, in late May to early June. Deployment of plates at different depths revealed a marked reduction in S. vermicularis settlement intensity between 6 and 12 m. As this corresponds with the deeper limit of the peripheral fringe of serpulid reefs in the loch, it is suggested that this limit is imposed by a depth-correlated settlement response, rather than reduction in available substrata. Comparisons of various substrata showed a preference by S. vermicularis larvae for a slate over a scallop substrate and no evidence of enhanced recruitment to occupied or unoccupied tubes of S. vermicularis, suggesting that gregarious attraction is unlikely to be a factor causing reef formation. Settlement onto the upper side of a horizontal scallop substrate was found to be insignificant in comparison with the underside or a vertically orientated scallop. Evidence for the role of light in controlling the depth and substrate-orientation preferences of S. vermicularis larvae is discussed. Based on the results of this study, recommendations are made regarding remediation of areas suffering reef damage.  相似文献   
96.
The interaction of a solitary wave with an array of surface-piercing vertical circular cylinders is investigated numerically. The wave motion is modeled by a set of generalized Boussinesq equations. The governing equations are discretized using a finite element method. The numerical model is validated against the experimental data of solitary wave reflection from a vertical wall and solitary wave scattering by a vertical circular cylinder respectively. The predicted wave surface elevation and the wave forces on the cylinder agree well with the experimental data. The numerical model is then employed to study solitary wave scattering by arrays of two circular cylinders and four circular cylinders respectively. The effect of wave direction on the wave forces and the wave runup on the cylinders is quantified.  相似文献   
97.
A comparison of the diffraction of multidirectional random waves using several selected wave spectrum models is presented in this paper. Six wave spectrum models, Bretschneider, Pierson–Moskowitz, ISSC, ITTC, Mitsuyasu, and JONSWAP spectrum, are considered. A discrete form for each of the given spectrum models is used to specify the incident wave conditions. Analytical solutions based on both the Fresnel integrals and polynomial approximations of the Fresnel integrals and numerical solutions of a boundary integral approach have been used to obtain the two-dimensional wave diffraction by a semi-infinite breakwater at uniform water depth. The diffraction of random waves is based on the cumulative superposition of linear diffraction solution. The results of predicted random wave diffraction for each of the given spectrum models are compared with those of the published physical model presented by Briggs et al. [1995. Wave diffraction around breakwater. Journal of Waterway, Port, Coastal and Ocean Engineering—ASCE 121(1), 23–35]. Reasonable agreement is obtained in all cases. The effect of the directional spreading function is also examined from the results of the random wave diffraction. Based on these comparisons, the present model for the analysis of various wave spectra is found to be an accurate and efficient tool for predicting the random wave field around a semi-infinite breakwater or inside a harbor of arbitrary geometry in practical applications.  相似文献   
98.
A study of sea surface wave propagation and its energy deformation was carried out using field observations and numerical experiments over a region spanning the midshelf of the South Atlantic Bight (SAB) to the Altamaha River Estuary, GA. Wave heights on the shelf region correlate with the wind observations and directional observations show that most of the wave energy is incident from the easterly direction. Comparing midshelf and inner shelf wave heights during a time when there was no wind and hence no wave development led to an estimation of wave energy dissipation due to bottom friction with corresponding wave dissipation factor of 0.07 for the gently sloping continental shelf of the SAB. After interacting with the shoaling region of the Altamaha River, the wave energy within the estuary becomes periodic in time showing wave energy during flood to high water phase of the tide and very little wave energy during ebb to low water. This periodic modulation inside the estuary is a direct result of enhanced depth and current-induced wave breaking that occurs at the ebb shoaling region surrounding the Altamaha River mouth at longitude 81.23°W. Modelling results with STWAVE showed that depth-induced wave breaking is more important during the low water phase of the tide than current-induced wave breaking during the ebb phase of the tide. During the flood to high water phase of the tide, wave energy propagates into the estuary. Measurements of the significant wave height within the estuary showed a maximum wave height difference of 0.4 m between the slack high water (SHW) and slack low water (SLW). In this shallow environment these wave–current interactions lead to an apparent bottom roughness that is increased from typical hydraulic roughness values, leading to an enhanced bottom friction coefficient.  相似文献   
99.
Starting from the widespread phenomena of porous bottoms in the near shore region, considering fully the diversity of bottom topography and wave number variation, and including the effect of evanescent modes, a general linear wave theory for water waves propagating over uneven porous bottoms in the near shore region is established by use of Green‘s scond identity. This theory can be reduced to a number of the most typical mild-slope equations curreutly in use and provide a reliable research basis for follow-up development of nonlinear water wave theory involving porous bottoms.  相似文献   
100.
Based on Hong‘s theory, previous random models, and a generalized expression suitable for FIT calculation, the interaction between irregular waves and vertical walls is numerically simulated. The results of simulation demonstrate that the wave energy changes with the incidence angle and the distance from the wall. Particularly, the Mach effect and the combined wave spectrum characteristics are analyzed in detail, which are significant in both theory and practice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号