首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   40篇
  国内免费   17篇
地球物理   82篇
地质学   47篇
海洋学   55篇
天文学   1篇
综合类   1篇
自然地理   5篇
  2023年   2篇
  2022年   3篇
  2021年   3篇
  2020年   10篇
  2019年   5篇
  2018年   17篇
  2017年   10篇
  2016年   10篇
  2015年   10篇
  2014年   10篇
  2013年   11篇
  2012年   11篇
  2011年   12篇
  2010年   2篇
  2009年   6篇
  2008年   8篇
  2007年   7篇
  2006年   5篇
  2005年   4篇
  2004年   5篇
  2003年   10篇
  2002年   3篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1991年   1篇
  1988年   1篇
排序方式: 共有191条查询结果,搜索用时 796 毫秒
131.
The outrigger system is an effective means of controlling the seismic response of core‐tube type tall buildings by mobilizing the axial stiffness of the perimeter columns. This study investigates the damped‐outrigger, incorporating the buckling‐restrained brace (BRB) as energy dissipation device (BRB‐outrigger system). The building's seismic responses are expected to be effectively reduced because of the high BRB elastic stiffness during minor earthquakes and through the stable energy dissipation mechanism of the BRB during large earthquakes. The seismic behavior of the BRB‐outrigger system was investigated by performing a spectral analysis considering the equivalent damping to incorporate the effects of BRB inelastic deformation. Nonlinear response history analyses were performed to verify the spectral analysis results. The analytical models with building heights of 64, 128, and 256 m were utilized to investigate the optimal outrigger elevation and the relationships between the outrigger truss flexural stiffness, BRB axial stiffness, and perimeter column axial stiffness to achieve the minimum roof drift and acceleration responses. The method of determining the BRB yield deformation and its effect on overall seismic performance were also investigated. The study concludes with a design recommendation for the single BRB‐outrigger system.  相似文献   
132.
The implementation of buckling‐restrained braces (BRBs) for new reinforced concrete frame (RCF) constructions is limited. This study investigates the seismic forces and stability in the BRBs and gussets of a 2‐story full‐scale RCF specimen by using Abaqus models and a newly proposed stability evaluation method. The hybrid and cyclic loading test results are accurately predicted by the Abaqus analyses. Existing methods for computing the gusset interface forces for steel buildings from both the brace and the frame actions are compared with the Abaqus results. The applicability of these methods for the BRB‐RCF design is critically evaluated. It is confirmed that the Parallel‐2 method is suitable for estimating the BRB force demand imposed on the corner gusset and the generalized uniform force method is good for the corner gusset at the base. In addition, existing stability evaluation methods for BRBs and gussets are applied to investigate the out‐of‐plane (OOP) buckling of the first‐story BRB observed at the end of tests. The proposed stability model incorporates the BRB restrainer's flexural effects and 4 rotational springs in assessing the BRB's buckling. This model confirms that the BRB and the gusset's OOP buckling limit states could be coupled and must be evaluated together. By incorporating the flexural effects of the steel casing and the infilled grout, the proposed model satisfactorily predicts the OOP buckling of the first‐story BRB and gussets. These research results can be used for the implementation of BRBs in new RC frame constructions.  相似文献   
133.
The reinforced concrete (RC) shear wall serves as one of the most important components sustaining lateral seismic forces. Although they allow advanced seismic performance to be achieved, RC shear walls are rather difficult to repair once the physical plastic hinge at the bottom part has been formed. To overcome this, a damage‐controllable plastic hinge with a large energy dissipation capacity is developed herein, in which the sectional forces are decoupled and sustained separately by different components. The components sustaining the axial and the shear forces all remain elastic even under a rarely occurred earthquake, while the bending components yield and dissipate seismic energy during a design‐level earthquake. This design makes the behavior of the system more predictable and thus more easily customizable to different performance demands. Moreover, the energy dissipation components can be conveniently replaced to fully restore the occupancy function of a building. To examine the seismic behavior of the newly developed component, 3 one third‐scale specimens were tested quasi‐statically, including 1 RC wall complying with the current design codes of China and 2 installed with the damage‐controllable plastic hinges. Each wall was designed to have the same strength. The experimental results demonstrated that the plastic‐hinge‐supported walls had a better energy dissipation capacity and damage controllability than the RC specimen. Both achieved drift ratios greater than 3% under a steadily increasing lateral force.  相似文献   
134.
The increasing number of wind turbines in active tectonic regions has attracted scientific interest to evaluate the seismic vulnerability of offshore wind turbines (OWTs). This study aims at assessing the deformation and collapse susceptibility of 2MW and 5MW OWTs subjected to shallow-crustal pulse-like ground motions, which has not been particularly addressed to date. A cloud-based fragility assessment is performed to quantify the seismic response for a given intensity measure and to assess the failure probabilities for pulse-like and non-pulse-like ground motions. The first-mode spectral acceleration Sa(T1) is found to be an efficient response predictor for OWTs, exhibiting prominent higher-mode behavior, at the serviceability and ultimate conditions. Regardless of earthquake type, it is shown that records with strong vertical components may induce nonlinearity in the supporting tower, leading to potential failure by buckling in three different patterns: (i) at tower base near platform level, (ii) close to tower top, and (iii) between the upper half of the main tower and its top. Type and extent of the damage are related to the coupled excitation of vertical and lateral higher modes, for which tower top acceleration response spectra Sa,i(Top) is an effective identifier. It is also observed that tower's slenderness ratio (l/d), the diameter-to-thickness ratio (d/t), and the rotor-nacelle-assembly mass (mRNA) are precursors for evaluating the damage mode and vulnerability of OWTs under both pulse-like and non-pulse-like ground motion records.  相似文献   
135.
There has been an increasing interest in using residual deformation as a seismic performance indicator for earthquake resistant building design. Self-centering braced structural systems are viable candidates for minimizing residual deformations following a major earthquake. Hence, this study proposes an alternative type of buckling restrained brace (BRB) with externally attached posttensioned (PT-BRB) carbon fiber composite cables (CFCCs). The steel core of the brace is used as an energy dissipator, whereas the CFCCs provide the self-centering force for minimizing residual story drifts. Three proof-of-concept specimens are designed, fabricated, and cyclically tested at different posttensioning force levels. The CFCC behavior to obtain cyclic response, including the anchorage system, is examined closely. A parametric study is also conducted to show the effect of the different configurations of PT-BRBs on the inelastic response. Furthermore, optimal brace parameters are discussed to realize design recommendations. The results indicated that the implementation of partially self-centering BRBs in building frames can lead to the target residual displacements. A stable behavior is obtained for the proposed PT-BRBs when subjected to the loading protocol specified in the American Institute of Steel Construction (AISC) 2016 Seismic Provisions.  相似文献   
136.
不埋海底管道在高温高压作用下,易发生水平向整体屈曲.实际工程中,常通过在管道路由上设置整体屈曲触发装置,实现对水平向整体屈曲的有效控制,其中以枕木法的成功应用最为多见.本文分析了枕木法的主要影响因素并验证了采用枕木法会出现管道屈曲段应力集中的现象,对比了枕木法、分布浮力法和枕木-浮力耦合法对管道整体屈曲变形规律的影响,...  相似文献   
137.
When performing the seismic risk assessment of new or existing buildings, the definition of compact indexes able to measure the damaging and safety level of structures is essential, also in view of the economic considerations on buildings rehabilitation. This paper proposes two series of indexes, named, respectively, Global Damage Indexes (GDIs), which are representative of the overall structure performance, and Section Damage Indexes (SDIs), which assess the conditions of reinforced concrete (RC) beam‐column sections. Such indexes are evaluated by means of an efficient numerical model able to perform nonlinear analyses of the RC frame, based on the continuum damage mechanics theory and fiber approach. An improvement of a two‐parameter damage model for concrete, developed by some of the authors, which guarantees a better correlation between the Local Damage Indexes (LDIs) and the material's mechanical characteristics, is also presented. For the reinforcement, a specific LDI, named ‘steel damage index’, which takes into account the plastic strain development and the bar buckling effect, is proposed. The numerical model has been employed to simulate several experimental tests, in order to verify the accuracy of the proposed approach in predicting the RC member's behavior. Nonlinear static and dynamic analyses of two RC frames are carried out. The robustness of the method, as well as the effectiveness of the GDIs in assessing the structural conditions, are demonstrated here. Finally, comparisons between the evolution of GDIs and the achievement of the performance levels as proposed in FEMA 356 are reported. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
138.
研究屈曲约束支撑半刚性连接框架弹塑性位移计算方法,为这种结构抗震设计提供依据.推导了屈曲约束支撑半刚性连接框架结构侧移刚度计算方法,通过计算屈曲约束支撑和半刚性连接在罕遇地震作用下的有效阻尼比,修正弹性设计反应谱,再利用修正后的设计反应谱进行结构弹塑性层间位移简化计算.通过与弹塑性时程分析对提出的计算方法进行验证.基于有效阻尼比的思想给出的弹塑性位移的简化计算方法可进行屈曲约束支撑半刚性连接框架罕遇地震下的抗震设计.  相似文献   
139.
Buckling restrained braces(BRBs)have been widely applied in seismic mitigation since they were introduced in the 1970s.However,traditional BRBs have several disadvantages caused by using a steel tube to envelope the mortar to prevent the core plate from buckling,such as;complex interfaces between the materials used,uncertain precision,and time consumption during the manufacturing processes.In this study,a new device called the multi-curve buckling restrained brace (MC-BRB) is proposed to overcome these d...  相似文献   
140.
从油气勘探的角度论博格达山的隆升   总被引:6,自引:1,他引:5  
应用构造运动学、沉积原型恢复、有效烃源岩评价及改造型盆地模拟等技术和方法,综合研究分析了博格达山地区及周缘烃源岩特征与生排烃高峰期、构造-沉积演化、博格达山的隆升及其对油气勘探的意义。分析认为,现今博格达山地区及周缘在晚二叠世沉积期属于深湖-半深湖亚相,发育两套好-中等级别烃源岩,即上二叠统芦草沟和红雁池组,生、排烃高峰期属于侏罗纪末期-新生代;现今博格达山地区在侏罗纪末期开始隆起,与烃源岩生、排烃高峰期相同。博格达山隆升期,博格达山地区周缘柴窝堡凹陷与米泉地区尽管接受博格达山地区的供油量较少,但自身烃源岩厚度大,生烃能力强,具有较大的资源潜力,仍然是有利的油气勘探地区。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号