首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1561篇
  免费   247篇
  国内免费   744篇
测绘学   2篇
大气科学   185篇
地球物理   234篇
地质学   1333篇
海洋学   543篇
天文学   2篇
综合类   138篇
自然地理   115篇
  2024年   5篇
  2023年   21篇
  2022年   64篇
  2021年   53篇
  2020年   75篇
  2019年   82篇
  2018年   62篇
  2017年   45篇
  2016年   63篇
  2015年   83篇
  2014年   104篇
  2013年   121篇
  2012年   95篇
  2011年   135篇
  2010年   111篇
  2009年   141篇
  2008年   108篇
  2007年   113篇
  2006年   154篇
  2005年   96篇
  2004年   93篇
  2003年   91篇
  2002年   87篇
  2001年   79篇
  2000年   69篇
  1999年   60篇
  1998年   50篇
  1997年   37篇
  1996年   52篇
  1995年   37篇
  1994年   27篇
  1993年   31篇
  1992年   19篇
  1991年   17篇
  1990年   12篇
  1989年   11篇
  1988年   9篇
  1987年   8篇
  1986年   10篇
  1985年   11篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1979年   1篇
  1976年   1篇
排序方式: 共有2552条查询结果,搜索用时 109 毫秒
571.
At present, several of the existing elastoplastic constitutive models are adapted for describing the stress–strain behavior of unsaturated soils. However, most of them present certain limitations in this field. These limitations can be related to the basic model and/or added unsaturated state variables and formulations. In this regard, inability to model the hydro‐mechanical behavior in constant water (CW) conditions is an example of these limitations. In this paper, an advanced version of CJS model is selected for adaptation to the unsaturated states. Adaptation to unsaturated states is achieved in the framework of effective stress approach. Effective stress equation and unsaturated state variables are selected based on the recent research existing in the literature. The developed model is capable of describing the complex behavior of unsaturated soil in the CW condition in addition to predicting the behavior at failure and post–failure, nonlinear elastoplastic behavior at low levels of stress and strain (by selecting a very small elastic domain), as well as wetting and collapse behaviors. In order to validate the model, results of triaxial tests in CD and CW conditions are used. The validation results indicate the good capability of the proposed model. Behavior of the unsaturated soils during wetting is an important issue. For this reason, the model is also evaluated based on the results of wetting and collapse triaxial tests. A comparison between the tests and simulation results shows that the model is able to predict the soil behavior under the wetting path. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
572.
This paper discusses the excess pore‐air and pore‐water pressure dissipations and the average degree of consolidation in the 2D plane strain consolidation of an unsaturated soil stratum using eigenfunction expansion and Laplace transformation techniques. In this study, the application of a constant external loading on a soil surface is assumed to immediately generate uniformly or linearly distributed initial excess pore pressures. The general solutions consisting of eigenfunctions and eigenvalues are first proposed. The Laplace transform is then applied to convert the time variable t in partial differential equations into the Laplace complex argument s. Once the domain is obtained, a simplified set of equations with variable s can be achieved. The final analytical solutions can be computed by taking a Laplace inverse. The proposed equations predict the two‐dimensional consolidation behaviour of an unsaturated soil stratum capturing the uniformly and linearly distributed initial excess pore pressures. This study investigates the effects of isotropic and anisotropic permeability conditions on variations of excess pore pressures and the average degree of consolidation. Additionally, isochrones of excess pore pressures along vertical and horizontal directions are presented. It is found that the initial distribution of pore pressures, varying with depth, results in considerable effects on the pore‐water pressure dissipation rate whilst it has insignificant effects on the excess pore‐air pressure dissipation rate. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
573.
Abstract

The water balance during a period of one year (15 October 1990–15 October 1991) was determined at an experimental site in the Areuse River delta (Switzerland). The groundwater recharge rates were found to be 36 and 33% of total precipitation according to evapotranspiration estimates based on the Primault (1962) and the Penman-Monteith methods, respectively. Variations in the water storage were obtained by weekly measurements with a neutron probe. Observed hydraulic gradients indicated a zero-flux plane between depths of 0.55 and 1.02 m that separated the infiltration zone from the zone of evapotranspiration in all seasons.  相似文献   
574.
Monitoring the effects of acidic deposition on aquatic ecosystems in the Northeastern US has generally required regular measurements of stream buffering chemistry (i.e. acid‐neutralizing capacity (ANC) and calcium Ca2+), which can be expensive and time consuming. The goal of this paper was to develop a simple method for predicting baseflow buffering chemistry based on the hydrogeomorphic properties of ten nested watersheds in the Neversink River basin (2·0–176·0 km2), an acid‐sensitive basin in the Catskill Mountains, New York State. The tributaries and main reach watersheds have strongly contrasting mean baseflow ANC values and Ca2+ concentrations, despite rather homogeneous vegetation, bedrock geology, and soils. A stepwise regression was applied to relate 13 hydrogeomorphic properties to the mean baseflow ANC values and Ca2+ concentrations. The regression analysis showed that watersheds with lower ANC values had a higher mean ratio of ‘quickflow’ runoff to precipitation during 20 non‐snowmelt runoff events (referred to as mean runoff ratio). The mean runoff ratio could explain at least 80% of the variability in mean baseflow ANC values and Ca2+ concentrations among the ten watersheds. Greater mean runoff ratios also correlated with steeper slopes and greater drainage densities, thus allowing the prediction of baseflow ANC values (r2 = 0·75) and Ca2+ concentrations (r2 = 0·77) with widely available spatial data alone. These results indicate that hydrogeomorphic properties can predict a watershed's sensitivity to acid deposition in regions where the spatial sources of stream buffering chemistry from the bedrock mineralogy and soils are fairly uniform. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
575.
Effective capabilities of combined chemo‐elasto‐plastic and unsaturated soil models to simulate chemo‐hydro‐mechanical (CHM) behaviour of clays are examined in numerical simulations through selected boundary value problems. The objective is to investigate the feasibility of approaching such complex material behaviour numerically by combining two existing models. The chemo‐mechanical effects are described using the concept of chemical softening consisting of reduction of the pre‐consolidation pressure proposed originally by Hueckel (Can. Geotech. J. 1992; 29 :1071–1086; Int. J. Numer. Anal. Methods Geomech. 1997; 21 :43–72). An additional chemical softening mechanism is considered, consisting in a decrease of cohesion with an increase in contaminant concentration. The influence of partial saturation on the constitutive behaviour is modelled following Barcelona basic model (BBM) formulation (Géotech. 1990; 40 (3):405–430; Can. Geotech. J. 1992; 29 :1013–1032). The equilibrium equations combined with the CHM constitutive relations, and the governing equations for flow of fluids and contaminant transport, are solved numerically using finite element. The emphasis is laid on understanding the role that the individual chemical effects such as chemo‐elastic swelling, or chemo‐plastic consolidation, or finally, chemical loss of cohesion have in the overall response of the soil mass. The numerical problems analysed concern the chemical effects in response to wetting of a clay specimen with an organic liquid in rigid wall consolidometer, during biaxial loading up to failure, and in response to fresh water influx during tunnel excavation in swelling clay. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
576.
This paper aims at revisiting the constitutive equations of unsaturated porous solids at the light of a Lagrangian saturation concept. By referring the currently wetted porous volume to the reference configuration, the Lagrangian saturation is the state variable associated with the interfacial energy changes only, irrespective of the elastic energy required for deforming the solid matrix. The Lagrangian saturation concept provides the basis of a generic approach to the theory of poroelastoplasticity in unsaturated conditions. We successively examine the case where the saturating fluids occupy disconnected networks and the case where the networks are connected so that the saturating fluids can invade the porous solid or recede from it. The analysis provides the restricted situations where the averaged pore pressure may play the role of an effective pore pressure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
577.
A theory is proposed to evaluate the loosening earth pressure (vertical earth pressure after excavation) acting on a shallow tunnel in unsaturated ground with an arbitrary groundwater level. The theory is developed based on the limit equilibrium theory, combining soil–water characteristic curves, Mohr–Coulomb failure criteria, and effective stress for unsaturated soils. The proposed theory is applied to predict the vertical distribution of loosening earth pressure in unsaturated ground, which shows a significant difference from that in saturated ground. In unsaturated ground, suction contributes to the increase in effective loosening earth pressure and shear resistance. The remarkable effects of groundwater depth, soil type, and scale of overburden height and trapdoor width on loosening earth pressure are also revealed. Based on the soil–water characteristic curve, the degree of saturation decreases, which causes wet density to decrease and the total and effective loosening earth pressures to have contrary tendencies. Moreover, effective loosening earth pressures vary with soil type as the degree of saturation varies. The total loosening earth pressures are, however, very similar regardless of soil type, because wet density and shear resistance have similar tendencies. The proposed theory provides a valid model for loosening earth pressure in unsaturated ground that will be useful for shallow tunnel excavations.  相似文献   
578.
Unsaturated soils are highly heterogeneous 3‐phase porous media. Variations of temperature, the degree of saturation, and density have dramatic impacts on the hydro‐mechanical behavior of unsaturated soils. To model all these features, we present a thermo‐hydro‐plastic model in which the hydro‐mechanical hardening and thermal softening are incorporated in a hierarchical fashion for unsaturated soils. This novel constitutive model can capture heterogeneities in density, suction, the degree of saturation, and temperature. Specifically, this constitutive model has 2 ingredients: (1) it has a “mesoscale” mechanical state variable—porosity and 3 environmental state variables—suction, the degree of saturation, and temperature; (2) both temperature and mechanical effects on water retention properties are taken into account. The return mapping algorithm is applied to implement this model at Gauss point assuming an infinitesimal strain. At each time step, the return mapping is conducted only in principal elastic strain space, assuming no return mapping in suction and temperature. The numerical results obtained by this constitutive model are compared with the experimental results. It shows that the proposed model can simulate the thermo‐hydro‐mechanical behavior of unsaturated soils with satisfaction. We also conduct shear band analysis of an unsaturated soil specimen under plane strain condition to demonstrate the impact of temperature variation on shear banding triggered by initial material heterogeneities.  相似文献   
579.
An analytical solution to 1D coupled water infiltration and deformation in layered soils is derived using a Laplace transformation. Coupling between seepage and deformation, and initial conditions defined by arbitrary continuous pore‐water pressure distributions are considered. The analytical solutions describe the transient pore‐water pressure distributions during 1D, vertical infiltration toward the water table through two‐layer unsaturated soils. The nonlinear coupled formulations are first linearized and transformed into a form that is solvable using a Laplace transformation. The solutions provide a reliable means of comparing the accuracy of various numerical methods. Parameters considered in the coupled analysis include the saturated permeability (ks), desaturation coefficient (α), and saturated volumetric water content (θs) of each soil layer, and antecedent and subsequent rainfall infiltration rates. The analytical solution demonstrates that the coupling of seepage and deformation plays an important role in water infiltration in layered unsaturated soils. A smaller value of α or a smaller absolute value of the elastic modulus of the soil with respect to a change in soil suction (H) for layered unsaturated soils means more marked coupling effect. A smaller absolute value of H of the upper layer soil also tends to cause more marked coupling effect. A large difference between the saturated coefficients of permeability for the top and bottom soil layers leads to reduced rainfall infiltration into the deep soil layer. The initial conditions also play a significant role in the pore‐water pressure redistribution and coupling effect. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
580.
Engineered barriers are basic elements in the design of repositories for the isolation of high‐level radioactive waste. This paper presents the thermo‐hydro‐mechanical (THM) analysis of a clay barrier subjected to heating and hydration. The study focuses on an ongoing large‐scale heating test, at almost full scale, which is being carried out at the CIEMAT laboratory under well‐controlled boundary conditions. The test is intensely instrumented and it has provided the opportunity to study in detail the evolution of the main THM variables over a long period of time. Comprehensive laboratory tests carried out in the context of the FEBEX and NF‐PRO projects have allowed the identification of the model parameters to describe the THM behaviour of the compacted expansive clay. A conventional THM approach that assumes the swelling clay as a single porosity medium has been initially adopted to analyse the evolution of the test. The model was able to predict correctly the global THM behaviour of the clay barrier in the short term (i.e. for times shorter than three years), but some model limitations were detected concerning the prediction of the long‐term hydration rate. An additional analysis of the test has been carried out using a double structure model to describe the actual behaviour of expansive clays. The double structure model explicitly considers the two dominant pore levels that actually exist in the FEBEX bentonite and it is able to account for the evolution of the material fabric. The simulation of the experiment using this enhanced model provides a more satisfactory reproduction of the long‐term experimental results. It also contributes to a better understanding of the observed test behaviour and it provides a physically based explanation for the very slow hydration of the barrier. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号