首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3561篇
  免费   417篇
  国内免费   176篇
测绘学   153篇
大气科学   227篇
地球物理   1600篇
地质学   1177篇
海洋学   371篇
天文学   30篇
综合类   39篇
自然地理   557篇
  2024年   13篇
  2023年   23篇
  2022年   33篇
  2021年   78篇
  2020年   159篇
  2019年   130篇
  2018年   112篇
  2017年   166篇
  2016年   164篇
  2015年   128篇
  2014年   151篇
  2013年   375篇
  2012年   86篇
  2011年   114篇
  2010年   111篇
  2009年   172篇
  2008年   239篇
  2007年   216篇
  2006年   203篇
  2005年   187篇
  2004年   157篇
  2003年   122篇
  2002年   103篇
  2001年   96篇
  2000年   109篇
  1999年   103篇
  1998年   99篇
  1997年   96篇
  1996年   73篇
  1995年   73篇
  1994年   51篇
  1993年   55篇
  1992年   32篇
  1991年   24篇
  1990年   24篇
  1989年   20篇
  1988年   21篇
  1987年   8篇
  1986年   11篇
  1985年   5篇
  1984年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1954年   2篇
排序方式: 共有4154条查询结果,搜索用时 156 毫秒
241.
The validation of soil water balance models and the evaluation of the quality of the model predictions at field‐scale require time‐series of in situ measured model outputs. In our study, we have validated such a model using a 6‐year period with time‐series of automatically recorded, daily volumetric soil water contents measured with the time‐domain reflectometry with intelligent microelements (TRIME) method and daily pressure heads measured with tensiometers. The comparisons of simulated with measured soil water contents and pressure heads were analysed using the modelling efficiency index (IA) and the square root of the mean square error (RMSE) in order to evaluate the prediction quality of the model. In our study, IA and RMSE, obtained either from the comparison of simulated with measured soil water contents or the comparison of calculated with observed pressure heads, in some cases lead to different results regarding the evaluation of the simulation quality of the soil water balance model. For example, a good fit between simulated and observed soil water contents does not necessarily result in a comparably good fit between the corresponding calculated and measured pressure heads. Therefore, a combined use of both measurement techniques, which takes into account their respective advantages and disadvantages, gives a more complete overview on the simulation quality of the soil water balance model than the single use of one of those techniques. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
242.
243.
In the practice of geotechnical engineering, the case of a ring footing carrying a set of concentrated point loads is a common problem. At times, the induced vertical and angular displacements for the ring footing need to be evaluated at a relatively precise level. By making use of the governing set of equations derived for the case of a general curved beam, expressions that can be easily implemented in modern computing software are derived for the vertical and angular displacements of a ring footing of rectangular cross section as functions of the radial position. The loading case considered is a vertical point load, and the soil is modelled as elastic. Estimates of the displacements have been shown for a common range of practical applications. The behaviour for a set of concentrated loads may be evaluated using the derived equations through direct superposition. Nonlinear finite element analysis is used to evaluate the vertical deflection and angular twist of the ring foundation. Numerical analysis performed for three ring foundations with different radii and cross sections is reported to validate the accuracy of the derived analytical solution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
244.
Particle manifold method (PMM) is a new extension of the numerical manifold method (NMM). PMM uses a mathematical cover system to describe the motion and deformation of a particle‐based physical domain. By introducing the concept of particle into NMM, PMM takes the advantages of easy topological and contact operations with particles. In this article, the methodology, formulations and implementation of the method are presented, together with modelling examples for validation. It is found that good solutions for both continuous and discontinuous problems are obtained by the new developed PMM. Due to the underlying coupled continuum‐discontinuum property of PMM, it has great potential for modelling of geomechanical problems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
245.
Casey Lee  Guy Foster 《水文研究》2013,27(10):1426-1439
In‐stream sensors are increasingly deployed as part of ambient water quality‐monitoring networks. Temporally dense data from these networks can be used to better understand the transport of constituents through streams, lakes or reservoirs. Data from existing, continuously recording in‐stream flow and water quality monitoring stations were coupled with the two‐dimensional hydrodynamic CE‐QUAL‐W2 model to assess the potential of altered reservoir outflow management to reduce sediment trapping in John Redmond Reservoir, located in east‐central Kansas. Monitoring stations upstream and downstream from the reservoir were used to estimate 5.6 million metric tons of sediment transported to John Redmond Reservoir from 2007 through 2010, 88% of which was trapped within the reservoir. The two‐dimensional model was used to estimate the residence time of 55 equal‐volume releases from the reservoir; sediment trapping for these releases varied from 48% to 97%. Smaller trapping efficiencies were observed when the reservoir was maintained near the normal operating capacity (relative to higher flood pool levels) and when average residence times were relatively short. An idealized, alternative outflow management scenario was constructed, which minimized reservoir elevations and the length of time water was in the reservoir, while continuing to meet downstream flood control end points identified in the reservoir water control manual. The alternative scenario is projected to reduce sediment trapping in the reservoir by approximately 3%, preventing approximately 45 000 metric tons of sediment from being deposited within the reservoir annually. This article presents an approach to quantify the potential of reservoir management using existing in‐stream data; actual management decisions need to consider the effects on other reservoir benefits, such as downstream flood control and aquatic life. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
246.
This paper is concerned with an example of quantitative modelling of orebody formation as a guide to reducing the risk for future mineral exploration. Specifically, the paper presents a detailed 3–D numerical model for the formation of the Century zinc deposit in northern Queensland. The model couples fluid flow with deformation, thermal transport and chemical reactions. The emphasis of the study is a systems approach where the holistic mineralising system is considered rather than concentrating solely on the mineral deposit. In so doing the complete plumbing system for mineralisation is considered with a view to specifying the critical conditions responsible for the ore deposit occurring where it does and having the size and metal grades that are observed. The numerical model is based on detailed geological, tectonic, isotopic and mineralogical data collected over the past 20 years. The conclusions are that the Century zinc deposit is located where it is because of the following factors: (i) a thermal anomaly is associated with the Termite Range Fault due to advection of heat from depth by fluid flow up the Termite Range Fault; (ii) bedding‐plane fissility in the shale rocks hosting the Century zinc deposit has controlled the wavelength and nature of D1 folding in the vicinity of the deposit and has also controlled increases in permeability due to hydrofracture of the shales; such hydrofracture is also associated with the production of hydrocarbons as these shales passed through the ‘oil‐window’; (iii) Pb–Zn leached from crustal rocks in the stratigraphic column migrated up along faults normal to the Termite Range Fault driven by topographic relief associated with inversion at the end of the Isan Orogeny; these fluids mixed with H2S derived at depth moving up the Termite Range Fault to mix with the crustal fluids to precipitate Pb–Zn in a plume downstream from the point of mixing. Critical factors to be used as exploration guides are high temperatures, carbonaceous fissile shales now folded into relatively tight D1 folds, fault‐controlled plumbing systems that enable fluid mixing, depletion of metals upstream of the deposit and,in particular,a very wide Fe‐depletion halo upstream of the deposit.  相似文献   
247.
Abstract

This study examined the end-of-winter snow storage, its distribution and the spatial and temporal melt patterns of a large, low gradient wetland at Polar Bear Pass, Bathurst Island, Nunavut, Canada. The project utilized a combination of field observations and a physically-based snowmelt model. Topography and wind were the major controls on snow distribution in the region, and snow was routinely scoured from the hilltop regions and deposited into hillslopes and valleys. Timing and duration of snowmelt at Polar Bear Pass were similar in 2008 and 2009. The snowmelt was initiated by an increase in air temperature and net radiation receipt. Inter-annual variability in spatial snowmelt patterns was evident at Polar Bear Pass and was attributed to a non-uniform snow cover distribution and local microclimate conditions. In situ field studies and modelling remain important in High Arctic regions for assessing wetland water budgets and runoff, in addition to model parameterization and validation of satellite imagery.

Editor Z.W. Kundzewicz

Citation Assini, J. and Young, K.L., 2012. Snow cover and snowmelt of an extensive High Arctic wetland: spatial and temporal seasonal patterns. Hydrological Sciences Journal, 57 (4), 738–755.  相似文献   
248.
Abstract

Abstract The MASONW (MACRO + SOILN + Watershed) model describing nitrogen leaching in watersheds was developed and tested. The model is based on the MACRO and SOILN models. The dual-porosity model MACRO simulates water flow on the field scale. The SOILN model describes turnover and leaching of nitrogen. Two main features of a watershed have been added into these two models: (a) the existence of a river system, and (b) variable thickness of the aeration zone within a watershed. Good agreement between the output of the MASONW model and observed data for water discharge and nitrate concentrations were achieved in the Odense watershed (496 km2) in Denmark.  相似文献   
249.
Opencast mining alters surface and subsurface hydrology of a landscape both during and post‐mining. At mine closure, following opencast mining in mines with low overburden to coal ratios, a void is left in the final landform. This final void is the location of the active mine pit at closure. Voids are generally not infilled within the mines' lifetime, because of the prohibitive cost of earthwork operations, and they become post‐mining water bodies or pit lakes. Water quality is a significant issue for pit lakes. Groundwater within coal seams and associated rocks can be saline, depending on the nature of the strata and groundwater circulation patterns. This groundwater may be preferentially drawn to and collected in the final void. Surface runoff to the void will not only collect salts from rainfall and atmospheric fallout, but also from the ground surface and the weathering of fresh rock. As the void water level rises, its evaporative surface area increases, concentrating salts that are held in solution. This paper presents a study of the long term, water quality trends in a post‐mining final void in the Hunter Valley, New South Wales, Australia. This process is complex and occurs long term, and modelling offers the only method of evaluating water quality. Using available geochemical, climate and hydrogeological data as inputs into a mass‐balance model, water quality in the final void was found to increase rapidly in salinity through time (2452 to 8909 mg l−1 over 500 years) as evaporation concentrates the salt in the void and regional groundwater containing high loads of salt continues to flow into the void. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
250.
When formulating a hydrologic model, scientists rely on parameterizations of multiple processes based on field data, but literature review suggests that more frequently people select parameterizations that were included in pre-existing models rather than re-evaluating the underlying field experiments. Problems arise when limited field data exist, when “trusted” approaches do not get reevaluated, and when sensitivities fundamentally change in different environments. The physics and dynamics of snow interception by conifers is just such a case, and it is critical to simulation of the water budget and surface albedo. The most commonly used interception parameterization is based on data from four trees from one site, but results from this field study are not directly transferable to locations with relatively warmer winters, where the dominant processes differ dramatically. Here, we combine a literature review with model experiments to demonstrate needed improvements. Our results show that the choice of model form and parameters can vary the fraction of snow lost through interception by as much as 30%. In most simulations, the warming of mean winter temperatures from −7 to 0°C reduces the modelled fraction of snow under the canopy compared to the open, but the magnitude of simulated decrease varies from about 10% to 40%. The range of results is even larger when considering models that neglect the melting of in-canopy snow in higher-humidity environments where canopy sublimation plays less of a role. Thus, we recommend that all models represent canopy snowmelt and include representation of increased loading due to increased adhesion and cohesion when temperatures rise from −3 to 0°C. In addition to model improvements, field experiments across climates and forest types are needed to investigate how to best model the combination of dynamically changing forest cover and snow cover to better understand and predict changes to albedo and water supplies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号