首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2034篇
  免费   662篇
  国内免费   1374篇
测绘学   45篇
大气科学   2027篇
地球物理   450篇
地质学   338篇
海洋学   763篇
天文学   22篇
综合类   84篇
自然地理   341篇
  2024年   16篇
  2023年   37篇
  2022年   96篇
  2021年   108篇
  2020年   162篇
  2019年   148篇
  2018年   105篇
  2017年   123篇
  2016年   112篇
  2015年   124篇
  2014年   163篇
  2013年   209篇
  2012年   194篇
  2011年   208篇
  2010年   157篇
  2009年   180篇
  2008年   153篇
  2007年   229篇
  2006年   207篇
  2005年   198篇
  2004年   161篇
  2003年   130篇
  2002年   138篇
  2001年   120篇
  2000年   94篇
  1999年   66篇
  1998年   83篇
  1997年   57篇
  1996年   60篇
  1995年   63篇
  1994年   50篇
  1993年   29篇
  1992年   27篇
  1991年   19篇
  1990年   4篇
  1989年   10篇
  1988年   9篇
  1987年   3篇
  1986年   1篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有4070条查询结果,搜索用时 93 毫秒
101.
This paper describes palynological evidence for what appears to be comparatively large-scale human impact in the catchment of the Sungai Niah in the wet tropical lowland swamp forests of Sarawak, Malaysian Borneo close to the Great Cave of Niah. Pollen associated with cleared landscapes and rice cultivation is evident in the sedimentary record from before 6000 cal yr B.P. Human activity seems to have been associated with changes in sedimentary regime, with peat-dominated environments being replaced diachronously by clay-dominated deposition. This may reflect anthropogenic soil erosion in the catchment of the Sungai Niah.  相似文献   
102.
兰州市2001年沙尘气溶胶质量浓度的特征分析   总被引:11,自引:14,他引:11  
 分析了2001年沙尘暴期间兰州与靠近沙尘源区的武威的沙尘浓度和粒径分布特征,并运用对数正态分布规律拟合了沙尘粒径的分布。通过对比武威、皋兰和兰州沙尘暴期间沙尘浓度的变化以及武威与兰州的沙尘粒径分布特征,揭示了河西走廊沙漠对兰州市沙尘暴的影响。  相似文献   
103.
固沙林庇护区内降尘特征的初步观测   总被引:2,自引:1,他引:2  
张华  何红  李锋瑞 《干旱区地理》2005,28(2):156-160
采用野外定位实测法,连续两年对科尔沁沙地24龄人工固沙杨树(Populussimonii)林庇护区内4~6月份及强沙尘暴事件中的降尘特征进行了观测研究。结果表明:(1)林地庇护区内4、5月份的降尘量较多,分别为273和437kg/hm2,6月份的降尘量较少,为171kg/hm2。(2)林地中央的滞尘效应在风蚀季节和强沙尘暴天气过程中十分显著。(3)林地庇护区内的降尘中粒径<0.02mm颗粒含量占60.7%,降尘中的全C、全N和速效P含量分别高达1.676%、0.163%和210.66mg/kg,这对风沙土表层土壤的细化和养分的积累具有重要的生态学意义。  相似文献   
104.
Equatorial glacier‐fed streams present unique hydraulic patterns when compared to glacier‐fed observed in temperate regions as the main variability in discharge occurs on a daily basis. To assess how benthic fauna respond to these specific hydraulic conditions, we investigated the relationships between flow regime, hydraulic conditions (boundary Reynolds number, Re*), and macroinvertebrate communities (taxon richness and abundance) in a tropical glacier‐fed stream located in the high Ecuadorian Andes (> 4000 m). Both physical and biotic variables were measured under four discharge conditions (base‐flow and glacial flood pulses of various intensities), at 30 random points, in two sites whose hydraulic conditions were representative to those found in other streams of the study catchment. While daily glacial flood pulses significantly increased hydraulic stress in the benthic habitats (appearance of Re* > 2000), low stress areas still persisted even during extreme flood events (Re* < 500). In contrast to previous research in temperate glacier‐fed streams, taxon richness and abundance were not significantly affected by changes in hydraulic conditions induced by daily glacial flood pulses. However, we found that a few rare taxa, in particular rare ones, preferentially occurred in highly stressed hydraulic habitats. Monte‐Carlo simulations of benthic communities under glacial flood reduction scenarios predicted that taxon richness would be significantly reduced by the loss of high hydraulic stress habitats following glacier shrinking. This pioneer study on the relationship between hydraulic conditions and benthic diversity in an equatorial glacial stream evidenced unknown effects of climate change on singular yet endangered aquatic systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
105.
Simulation of quick runoff components such as surface runoff and associated soil erosion requires temporal high‐resolution rainfall intensities. However, these data are often not available because such measurements are costly and time consuming. Current rainfall disaggregation methods have shortcomings, especially in generating the distribution of storm events. The objectives of this study were to improve point rainfall disaggregation using a new magnitude category rainfall disaggregation approach. The procedure is introduced using a coupled disaggregation approach (Hyetos and cascade) for multisite rainfall disaggregation. The new procedure was tested with ten long‐term precipitation data sets of central Germany using summer and winter precipitation to determine seasonal variability. Results showed that dividing the rainfall amount into four daily rainfall magnitude categories (1–10, 11–25, 26–50, >50 mm) improves the simulation of high rainfall intensity (convective rainfall). The Hyetos model category approach (HyetosCat) with seasonal variation performs representative to observed hourly rainfall compared with without categories on each month. The mean absolute percentage accuracy of standard deviation for hourly rainfall is 89.7% in winter and 95.6% in summer. The proposed magnitude category method applied with the coupled HyetosCat–cascade approach reproduces successfully the statistical behaviour of local 10‐min rainfall intensities in terms of intermittency as well as variability. The root mean square error performance statistics for disaggregated 10‐min rainfall depth ranges from 0.20 to 2.38 mm for summer and from 0.12 to 2.82 mm for the winter season in all categories. The coupled stochastic approach preserves the statistical self‐similarity and intermittency at each magnitude category with a relatively low computational burden. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
106.
Salinity and periodic inundation are both known to have a major role in shaping the ecohydrology of mangroves through their controls on water uptake, photosynthesis, stomatal conductance, gas exchanges, and nutrient availability. Salinity, in particular, can be considered one of the main abiotic regulating factors for halophytes and salt‐tolerant species, due to its influence on water use patterns and growth rate. Ecohydrological literature has rarely focused on the effects of salinity on plant transpiration, based on the fact that the terrestrial plants mostly thrive in low‐saline, unsaturated soils where the role of osmotic potential can be considered negligible. However, the effect of salinity cannot be neglected in the case of tidal species like mangroves, which have to cope with hyperosmotic conditions and waterlogging. We introduce here a first‐order ecohydrological model of the soil/plant‐atmosphere continuum of Avicennia marina—also known as gray mangrove—a highly salt‐tolerant pioneer species able to adapt to hyperarid intertidal zones and characterized by unique morphological and ecophysiological traits. The A. marina's soil‐plant‐atmosphere continuum takes explicitly into account the role of water head, osmotic water potential, and water salinity in governing plant water fluxes. A. marina's transpiration is thus modeled as a function of salinity based on a simple parameterization of salt exclusion mechanisms at the root level and a modified Jarvis' expression accounting for the effects of salinity on stomatal conductance. Consistently with previous studies investigating the physiology of mangroves in response to different environmental drivers, our results highlight the major influence of salinity on mangrove transpiration when contrasted with other potential stressors such as waterlogging and water stress.  相似文献   
107.
Uncontrolled overland flow drives flooding, erosion, and contaminant transport, with the severity of these outcomes often amplified in urban areas. In pervious media such as urban soils, overland flow is initiated via either infiltration‐excess (where precipitation rate exceeds infiltration capacity) or saturation‐excess (when precipitation volume exceeds soil profile storage) mechanisms. These processes call for different management strategies, making it important for municipalities to discern between them. In this study, we derived a generalized one‐dimensional model that distinguishes between infiltration‐excess overland flow (IEOF) and saturation‐excess overland flow (SEOF) using Green–Ampt infiltration concepts. Next, we applied this model to estimate overland flow generation from pervious areas in 11 U.S. cities. We used rainfall forcing that represented low‐ and high‐intensity events and compared responses among measured urban versus predevelopment reference soil hydraulic properties. The derivation showed that the propensity for IEOF versus SEOF is related to the equivalence between two nondimensional ratios: (a) precipitation rate to depth‐weighted hydraulic conductivity and (b) depth of soil profile restrictive layer to soil capillary potential. Across all cities, reference soil profiles were associated with greater IEOF for the high‐intensity set of storms, and urbanized soil profiles tended towards production of SEOF during the lower intensity set of storms. Urban soils produced more cumulative overland flow as a fraction of cumulative precipitation than did reference soils, particularly under conditions associated with SEOF. These results will assist cities in identifying the type and extent of interventions needed to manage storm water produced from pervious areas.  相似文献   
108.
In the last decades, human activity has been contributing to climate change that is closely associated with an increase in temperatures, increase in evaporation, intensification of extreme dry and wet rainfall events, and widespread melting of snow and ice. Understanding the intricate linkage between climate warming and the hydrological cycle is crucial for sustainable management of groundwater resources, especially in a vulnerable continent like Africa. This study investigates the relationship between climate‐change drivers and potential groundwater recharge (PGR) patterns across Africa for a long‐term record (1960–2010). Water‐balance components were simulated by using the PCR‐GLOBWB model and were reproduced in both gridded maps and latitudinal trends that vary in space with minima on the Tropics and maxima around the Equator. Statistical correlations between temperature, storm occurrences, drought, and PGR were examined in six climatic regions of Africa. Surprisingly, different effects of climate‐change controls on PGR were detected as a function of latitude in the last three decades (1980–2010). Temporal trends observed in the Northern Hemisphere of Africa reveal that the increase in temperature is significantly correlated to the decline of PGR, especially in the Northern Equatorial Africa. The climate indicators considered in this study were unable to explain the alarming negative trend of PGR observed in the Sahelian region, even though the Standardized Precipitation‐Evapotranspiration Index (SPEI) values report a 15% drought stress. On the other hand, increases in temperature have not been detected in the Southern Hemisphere of Africa, where increasing frequency of storm occurrences determine a rise of PGR, particularly in southern Africa. Time analysis highlights a strong seasonality effect, while PGR is in‐phase with rainfall patterns in the summer (Northern Hemisphere) and winter (Southern Hemisphere) and out‐of‐phase during the fall season. This study helps to elucidate the mechanism of the processes influencing groundwater resources in six climatic zones of Africa, even though modelling results need to be validated more extensively with direct measurements in future studies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
109.
Concentration–discharge (C-Q) relationships are an effective tool for identifying watershed biogeochemical source and transport dynamics over short and long timescales. We examined stormflow C-Q, hysteresis, and flushing patterns of total suspended sediment (TSS) and soluble reactive phosphorus (SRP) in two stream reaches of a severely impaired agricultural watershed in northeastern Wisconsin, USA. The upper watershed reach—draining a relatively flat, row crop-dominated contributing area—showed predominantly anti-clockwise TSS hysteresis during storms, suggesting that particulate materials were mobilized more from distal upland sources than near- and in-channel areas. In contrast, the incised lower watershed reach produced strong TSS flushing responses on the rising limb of storm hydrographs and clockwise hysteresis, signalling rapid mobilization of near- and in-channel materials with increasing event flows. C-Q relationships for SRP showed complex patterns in both the upper and lower reaches, demonstrating largely non-linear chemodynamic C-Q behaviour during events. As with TSS, anti-clockwise SRP hysteresis in the upper reach suggested a delay in the hydrologic connectivity between SRP sources and the stream, with highly variable SRP concentrations during some events. A broad range of clockwise, anti-clockwise, and complex SRP hysteresis patterns occurred in the lower watershed, possibly influenced by in-channel legacy P stores and connection to tile drainage networks in the lower watershed area. Total suspended sediment and SRP responses were also strongly related to precipitation event characteristics including antecedent precipitation, recovery period, and precipitation intensity, highlighting the complexity of stormflow sediment and phosphorus responses in this severely impaired agricultural stream.  相似文献   
110.
The last 2014‐16 El Niño event was among the three strongest episodes on record. El Niño considerably changes annual and seasonal precipitation across the tropics. Here, we present a unique stable isotope data set of daily precipitation collected in Costa Rica prior to, during, and after El Niño 2014‐16, in combination with Lagrangian moisture source and precipitation anomaly diagnostics. δ2H composition ranged from ‐129.4 to +18.1 (‰) while δ18O ranged from ‐17.3 to +1.0 (‰). No significant difference was observed among δ18O (P=0.186) and δ2H (P=0.664) mean annual compositions. However, mean annual d‐excess showed a significant decreasing trend (from +13.3 to +8.7 ‰) (P<0.001) with values ranging from +26.6 to ‐13.9 ‰ prior to and during the El Niño evolution. The latter decrease in d‐excess can be partly explained by an enhanced moisture flux convergence across the southeastern Caribbean Sea coupled with moisture transport from northern South America by means of an increased Caribbean Low Level Jet regime. During 2014‐15, precipitation deficit across the Pacific domain averaged 46% resulting in a very severe drought; while a 94% precipitation surplus was observed in the Caribbean domain. Understanding these regional moisture transport mechanisms during a strong El Niño event may contribute to a) better understanding of precipitation anomalies in the tropics and b) re‐evaluate past stable isotope interpretations of ENSO events in paleoclimatic archives within the Central America region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号