首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2855篇
  免费   574篇
  国内免费   740篇
测绘学   131篇
大气科学   339篇
地球物理   804篇
地质学   1931篇
海洋学   254篇
天文学   129篇
综合类   154篇
自然地理   427篇
  2024年   14篇
  2023年   49篇
  2022年   86篇
  2021年   123篇
  2020年   120篇
  2019年   146篇
  2018年   115篇
  2017年   109篇
  2016年   144篇
  2015年   121篇
  2014年   172篇
  2013年   175篇
  2012年   145篇
  2011年   148篇
  2010年   138篇
  2009年   169篇
  2008年   178篇
  2007年   186篇
  2006年   183篇
  2005年   173篇
  2004年   156篇
  2003年   124篇
  2002年   150篇
  2001年   121篇
  2000年   127篇
  1999年   119篇
  1998年   92篇
  1997年   77篇
  1996年   85篇
  1995年   66篇
  1994年   63篇
  1993年   52篇
  1992年   55篇
  1991年   37篇
  1990年   42篇
  1989年   23篇
  1988年   24篇
  1987年   22篇
  1986年   10篇
  1985年   9篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1978年   5篇
  1976年   1篇
  1954年   2篇
排序方式: 共有4169条查询结果,搜索用时 31 毫秒
921.
922.
Extreme hydrologic responses following wildfires can lead to floods and debris flows with costly economic and societal impacts. Process-based hydrologic and geomorphic models used to predict the downstream impacts of wildfire must account for temporal changes in hydrologic parameters related to the generation and subsequent routing of infiltration-excess overland flow across the landscape. However, we lack quantitative relationships showing how parameters change with time-since-burning, particularly at the watershed scale. To assess variations in best-fit hydrologic parameters with time, we used the KINEROS2 hydrological model to explore temporal changes in hillslope saturated hydraulic conductivity (Ksh) and channel hydraulic roughness (nc) following a wildfire in the upper Arroyo Seco watershed (41.5 km2), which burned during the 2009 Station fire in the San Gabriel Mountains, California, USA. This study explored runoff-producing storms between 2008 and 2014 to infer watershed hydraulic properties by calibrating the model to observations at the watershed outlet. Modelling indicates Ksh is lowest in the first year following the fire and then increases at an average rate of approximately 4.2 mm/h/year during the first 5 years of recovery. The estimated values for Ksh in the first year following the fire are similar to those obtained in previous studies on smaller watersheds (<1.5 km2) following the Station fire, suggesting hydrologic changes detected here can be applied to lower-order watersheds. Hydraulic roughness, nc, was lowest in the first year following the fire, but increased by a factor of 2 after 1 year of recovery. Post-fire observations suggest changes in nc are due to changes in grain roughness and vegetation in channels. These results provide quantitative constraints on the magnitude of fire-induced hydrologic changes following severe wildfires in chaparral-dominated ecosystems as well as the timing of hydrologic recovery.  相似文献   
923.
Predictions of post-wildfire flooding and debris flows are needed, typically with short lead times. Measurements of soil-hydraulic properties necessary for model parameterization are, however, seldom available. This study quantified soil-hydraulic properties, soil-water retention, and selected soil physical properties within the perimeter of the 2017 Thomas Fire in California. The Thomas Fire burn scar produced catastrophic debris flows in January 2018, highlighting the need for improved prediction capability. Soil-hydraulic properties were also indirectly estimated using relations tied to soil-water retention. These measurements and estimates are examined in the context of parameterizing post-wildfire hydrologic models. Tension infiltrometer measurements showed significant decreases (p < .05) in field-saturated hydraulic conductivity (Kfs) and sorptivity (S) in burned areas relative to unburned areas. Wildfire effects on soil water-retention were dominated by significant decreases in saturated soil-water content (θS). The van Genuchten parameters α, N, and residual water content did not show significant wildfire effects. The impacts of the wildfire on hydraulic and physical soil properties were greatest in the top 1 cm, emphasizing that measurements of post-fire soil properties should focus on the near-surface. Reductions in Kfs, θs, and soil-water retention in burned soils were attributed to fire-induced decreases in soil structure evidenced by increases in dry bulk density. Sorptivity reductions in burned soils were attributed to increases in soil-water repellency. Rapid post-fire assessments of flash flood and debris flow hazards using physically-based hydrologic models are facilitated by similarities between Kfs, S, and the Green–Ampt wetting front potential (ψf) with measurements at other southern CA burned sites. We suggest that ratios of burned to unburned Kfs (0.37), S (0.36), and ψf (0.66) could be used to scale unburned values for model parameterization. Alternatively, typical burned values (Kfs = 20 mm hr−1; S = 6 mm hr−0.5; ψf = 1.6 mm) could be used for model parameterization.  相似文献   
924.
Stream temperature is a critical water quality parameter that is not fully understood, particularly in urban areas. This study explores drivers contributing to stream temperature variability within an urban system, at 21 sites within the Philadelphia region, Pennsylvania, USA. A comprehensive set of temperature metrics were evaluated, including temperature sensitivity, daily maximum temperatures, time >20°C, and temperature surges during storms. Wastewater treatment plants (WWTPs) were the strongest driver of downstream temperature variability along 32 km in Wissahickon Creek. WWTP effluent temperature controlled local (1–3 km downstream) temperatures year-round, but the impacts varied seasonally: during winter, local warming of 2–7°C was consistently observed, while local cooling up to 1°C occurred during summer. Summer cooling and winter warming were detected up to 12 km downstream of a WWTP. Comparing effects from different WWTPs provided guidelines for mitigating their thermal impact; WWTPs that discharged into larger streams, had cooler effluent, or had lower discharge had less effect on stream temperatures. Comparing thermal regimes in four urban headwater streams, sites with more local riparian canopy had cooler maximum temperatures by up to 1.5°C, had lower temperature sensitivity, and spent less time at high temperatures, although mean temperatures were unaffected. Watershed-scale impervious area was associated with increased surge frequency and magnitude at headwater sites, but most storms did not result in a surge and most surges had a low magnitude. These results suggest that maintaining or restoring riparian canopy in urban settings will have a larger impact on stream temperatures than stormwater management that treats impervious area. Mitigation efforts may be most impactful at urban headwater sites, which are particularly vulnerable to stream temperature disruptions. It is vital that stream temperature impacts are considered when planning stormwater management or stream restoration projects, and the appropriate metrics need to be considered when assessing impacts.  相似文献   
925.
Southeast Europe has historically been at the crossroads of migration routes between Western Asia and Europe. In the Holocene, this area might have been home to malaria. However, it is questionable when malaria arrived in this area and whether it could persist continuously or not in the Holocene. To begin to answer these questions, the July potential generation number of two malaria parasites were modelled, based on the reconstructed mean July temperatures of 52 times in the last 27 000 years. The results indicate that in the late Pleistocene era (27–12 kya bp ), vivax malaria might have been present in the south-east Black Sea and Aegean Sea's coastal areas. Vivax malaria could also be present in the Pannonian Basin and the inner parts of the North Balkans at least from the mid-Greenlandian period (~10 kya bp ). Although it is questionable whether falciparum malaria could be endemic in the Pannonian Basin during the mid-Holocene climate optimum (~6 kya bp ), this malaria plausibly could be endemic from the Neolithic era (~12–6.5 kya bp ) in the major river valleys of the North Balkan region, millennia ahead of the Graeco-Roman times (8th century bce to 6th century ce ).  相似文献   
926.
927.
Groundwater resources play a pivotal role in the rural water delivery system in Ghana. The hydrogeological system of Middle Voltaian terrain was simulated using available data on hydraulic heads and boundary conditions. The objective was to characterize the general groundwater flow pattern and provide local estimates of the distribution of hydraulic conductivity and recharge fields. The results suggest a predominant NE–SW flow direction, which ties in with the general regional structural trend and indicates that the hydrogeological conditions of the rocks are controlled by structural entities created in the wake of fracturing and/or weathering of the rocks whose primary permeabilities are considerably reduced because of high compaction and low‐grade metamorphism. Calibrated hydraulic conductivities range between 1.90 and 10.81 m/d. The spatial distribution appears to reflect the intensity of fracturing and/or weathering of the rock and the proportion of the clay fraction of the weathered zone. Vertical groundwater recharge has been estimated to range between 0.3% and 4.1% of the annual rainfall. This recharge rate is quite low and reflects the imperviousness of the thick overburden because of high clay content in some places and high compaction in others. Despite this apparently low recharge rate, groundwater resources potential in the area appear to be high, and increased abstraction from existing abstraction wells by up to 50% does not appear to register significant effects on groundwater budgets at the simulated recharge rates. This suggests that the well yields are much lower than the potential of the aquifer system. The apparently low yields might be associated with poor well development and the choice of inappropriate well completion materials. This study recommends a monitoring system to be developed for a much more regional groundwater flow simulation under transient conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
928.
唐海  张代磊  周文纳 《地质论评》2022,68(5):2022092009-2022092009
地热能是一种安全、清洁、稳定的可再生能源,广东阳江地区的地热资源开发潜力巨大,但研究程度较低。热红外遥感技术能够高效地圈定地热异常区并对隐伏断裂进行预测,笔者等选取研究区landsat8遥感数据,通过分析地表温度、地热异常点及人类活动的关系,利用大气校正方法对该区潜在的地热异常进行了预测。在排除人为热影响下得到高温地热异常区9处,排除湖泊水域以及海拔的影响下得到低温地热异常区4处。在此基础上,利用地表温度与归一化植被指数计算研究区的温度植被干旱指数值(TVDI),预测可能存在的隐伏断裂23 处。最后结合岩性、断裂构造有效地圈定了5处地热靶区,主要分布在研究区西南区域和新洲镇附近。研究结果有助于预测阳江地区具有开发前景的地热异常区、识别圈定具有勘探意义的靶区以及预测隐伏断裂,对该区后续地热资源的进一步研究具有重要的意义。  相似文献   
929.
保温法是目前寒区隧道建设中应用最为广泛的一种冻害防治方法。通过敷设保温材料可以减缓隧道结构、围岩体与洞内空气的热量交换过程,进而减小或避免衬砌与围岩体内的季节冻融,实现冻害防治的目的。在工程设计中,隧道保温段的敷设长度和厚度是两个关键参数,其中敷设厚度相对容易确定,但是敷设长度的确定目前缺乏统一的标准和简便可靠的方法,给隧道保温设计带来了一定的难度和不确定性。基于此,对包括现有铁路和公路规范要求、经验公式、工程类比法、理论解析法、数值模拟法等寒区隧道保温段敷设长度确定方面的工程实践、研究进展和挑战进行了系统的总结,并在此基础上提出保温设防设计用气象数据的选取方法、保温设防长度确定的依据、隧道进出口的差异性,以及季节冻土与多年冻土区隧道的差异等未来工程实践和科学研究仍需解决和研究的重点,以期能够为寒区隧道保温防冻工程设计难题的解决提供参考。  相似文献   
930.
保温材料广泛应用于寒区工程的诸多领域。然而,在服役过程中,保温材料往往会受到浸水、冻融和盐蚀等多场耦合的循环作用,导致其保温、防水和强度等物理力学性能出现不同程度的退化。目前,保温材料的类型非常多,但其性能和耐久性有所不同,因此科学合理地选择保温材料不仅关系到其长期保温效果,同时对于工程构筑物的长期稳定性具有重要的意义。针对循环冻融作用,选取寒区工程中常用的4种保温材料[聚酚醛(FLK)、聚氨酯(PU)、聚苯乙烯挤塑板(XPS)和聚苯乙烯发泡板(EPS)]开展了浸纯水、浸盐水和干燥状态下的室内冻融循环试验,对经历了不同冻融次数的样品进行了表观密度、吸水率、导热系数、压缩强度、弯曲强度和微观结构系列测试。结果表明:浸润作用对保温材料物理力学性质影响显著,亲水性材料FLK的保温和力学性能退化显著,而憎水性材料PU、XPS和EPS变化相对较小。干燥条件下,冻融循环作用对FLK、XPS和EPS吸水率以及FLK的导热系数影响量值可观,但对4种保温材料的压缩和弯曲强度影响不大。浸纯水和盐水条件下,经历30次冻融循环后,FLK的导热系数增加约50%,弯曲强度降低超过0.3%,EPS的压缩强度降低超过10%。浸盐水后保温材料经历冻融循环作用后其物理力学性能退化程度与浸纯水条件下有所不同,该差异值得关注。通过扫描电镜图像能够识别4种保温材料的孔隙尺寸、孔隙致密度和固体颗粒胶结方式,但对经历冻融循环作用后的变化难以识别和量化。基于试验结果,结合寒区交通工程应用场景,分析了4种保温材料的冻融耐久性,以期服务于寒区交通工程保温材料的合理应用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号