首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1968篇
  免费   348篇
  国内免费   620篇
测绘学   128篇
大气科学   317篇
地球物理   364篇
地质学   1410篇
海洋学   219篇
天文学   122篇
综合类   132篇
自然地理   244篇
  2024年   12篇
  2023年   45篇
  2022年   73篇
  2021年   107篇
  2020年   102篇
  2019年   113篇
  2018年   78篇
  2017年   78篇
  2016年   106篇
  2015年   94篇
  2014年   120篇
  2013年   115篇
  2012年   110篇
  2011年   110篇
  2010年   100篇
  2009年   116篇
  2008年   122篇
  2007年   129篇
  2006年   118篇
  2005年   110篇
  2004年   108篇
  2003年   86篇
  2002年   96篇
  2001年   84篇
  2000年   92篇
  1999年   79篇
  1998年   60篇
  1997年   53篇
  1996年   60篇
  1995年   44篇
  1994年   35篇
  1993年   31篇
  1992年   36篇
  1991年   29篇
  1990年   24篇
  1989年   20篇
  1988年   18篇
  1987年   5篇
  1986年   5篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1978年   1篇
排序方式: 共有2936条查询结果,搜索用时 31 毫秒
991.
为了研究温度作用下缺陷花岗岩的热损伤问题,以甘肃北山缺陷花岗岩为例,从损伤力学和热力学的角度出发,研究了缺陷花岗岩内部热应力的产生机理,推导出缺陷花岗岩裂纹热损伤的临界应力公式,分析了高温作用对花岗岩热弹性比能变化的影响规律,建立了温度作用下花岗岩热损伤演化方程,并对温度作用下花岗岩应力损伤面可能存在的形态进行了研究。对含缺陷的花岗岩在温度作用下结构内部结构晶体单元损伤、晶体单元损伤应力变化规律进行数值模拟,结果表明:当模拟温度升高到60℃时,花岗岩缺陷裂纹附近出现明显的热损伤,远离缺陷处出现微弱的热损伤;当温度升高到120℃时,花岗岩缺陷处剪切破坏特征明显,裂纹处的热损伤点继续增大,远离缺陷处出现非常明显的不间断损伤点,损伤量、热应力、能量累计数出现了突变;此后,随着温度升高到200℃,损伤增量变化微弱。北山缺陷花岗岩的损伤量和温度之间存在直接的演化关系。  相似文献   
992.
中国东南部海相和近海相地层普遍遭受多次后期复杂岩浆作用的改造,因而,尽管不乏富有机质地层,但热  相似文献   
993.
李兴东  龙笛  黄琦  赵凡玉  刘廷玺 《遥感学报》2022,26(7):1289-1301
湖冰是对气候变化十分敏感的冰冻圈水文变量,起到调节区域气候和湖泊生态系统的作用,并作为一种自然资源服务于冰上生产生活。湖冰覆盖和湖冰厚度是研究湖冰过程的关键变量,目前大多数湖冰研究集中在湖冰覆盖领域,湖冰厚度领域由于缺乏实测资料和专门的遥感观测平台还存在诸多空白,大量缺资料地区湖冰厚度仍处于未知状态,亟待方法和数据上的突破与创新。本文综述了近20年国内外湖冰厚度遥感反演领域的进展,介绍了各类反演方法的原理机理及主要优缺点,其中被动微波遥感方法具有良好的时间分辨率但空间分辨率较粗,难以覆盖中小型湖泊;基于SAR影像的主动微波方法空间分辨率较高但物理机制复杂,可靠性有待进一步验证;基于测高雷达的主动微波方法观测时段较长,物理机制明确,易于拓展到无实测资料湖泊,但空间覆盖相对有限;热红外遥感方法时空分辨率较好,但容易受云和湖冰表面积雪的影响,反演精度和可靠性有待提升。在此基础上,本文分析湖冰厚度遥感反演领域面临的主要挑战和发展方向包括:(1)厘清湖冰表面积雪相关的物理过程;(2)实现大范围实测冰厚和遥感资料的集成;(3)实现多源遥感冰厚反演方法的交叉融合。  相似文献   
994.
于磊  张健  陈石  董淼  徐长仪 《地震学报》2015,37(4):565-574
珍贝—黄岩海山链作为我国南海的残留扩张中心, 对其研究具有重要的科学意义. 本文运用均衡学方法, 通过重力异常数据反演了过珍贝—黄岩海山链剖面的地壳界面变化, 同时计算了岩石圈热结构状态, 在此基础上建立了珍贝—黄岩海山链的岩石圈地温结构模型. 通过均衡分析方法, 对剖面上测点的海底地形数据进行了热均衡和重力均衡分析, 得到了热均衡和重力均衡形变量. 结果表明, 在珍贝—黄岩海山链高热流区域, 热均衡作用可以产生最大约0.55 km的形变, 其重力均衡形变范围为0.77—1.89 km. 热均衡通过改变海底地形和地壳物质密度不断作用于重力均衡, 重力又反过来作用于热均衡, 形成了热均衡-重力均衡动态调节机制.   相似文献   
995.
尘卷风是地球上常见的小型风沙灾害输移系统,但在火星上却大的多。而且尘卷风内部的电场对火星探测器产生严重的电磁干扰。通过建立尘卷风及其电场形成的模型,对尘卷风结构特征及电场进行数值计算。研究表明:尘卷风的形成机理可以用热对流泡理论来解释。沙粒在尘卷风中出现分层现象,粒径小的沙尘往往在粒径大的沙尘上面。尘卷风中带正负电荷的沙粒大约各占23.4%,荷质比大约为60 μC·kg-1时,尘卷风数值模拟结果与野外观测值吻合。在尘卷风发展过程中,尘卷风电场大约需要60 s达到稳定。而且电场关于尘卷风中心基本对称,并且在尘卷风中心电场强度较大,在离尘卷风较远的地方,电场趋于零。在距离尘卷风中心一定距离处电场随高度增大先增大后减小,大约10 m以下电场随高度增大而增大,在10 m以上电场随高度增大而减小。  相似文献   
996.
高寒草甸草地退化对土壤水热性质的影响及其环境效应   总被引:2,自引:2,他引:0  
尤全刚  薛娴  彭飞  董斯扬 《中国沙漠》2015,35(5):1183-1192
青藏高原高寒草甸草地的大面积退化,将改变浅层土壤的水热性质,影响地表水热交换,甚至导致区域生态环境的变化。本文通过系统分析典型原生高寒草甸与中度退化高寒草甸的植物群落特征、地上地下生物量和土壤理化特征的差异,研究高寒草甸草地退化对土壤水热性质的影响及其环境效应。结果表明:随着高寒草甸草地退化,植被覆盖度显著降低(p<0.01),适应旱生、深根系的杂草侵入适应湿润生境、浅根系的以莎草科植物为主的原生植被,生物多样性显著增加(p<0.01);草毡表层(0~10 cm)地下生物量显著减少(p<0.01),30~50 cm地下生物量显著增加(p<0.01)。草毡表层变薄降低了土壤容重的垂向异质性,使表层土壤容重显著增加(p<0.01),土壤颗粒显著变粗(p<0.01)。受浅层土壤有机质降低和土壤容重增加的影响,中度退化高寒草甸土壤的持水量和饱和导水率降低,土壤导热率升高。高寒草甸草地植被退化,土壤持水量、饱和导水率降低和导热率增加将加速地表水热交换,对高寒草甸草地退化和下伏多年冻土消融都可能是正反馈。  相似文献   
997.
Based on an analysis of the present geo-temperature field and the thermal conductivity (K) of 62 samples from the central-south area of the Huaibei coalfield in eastern China, we calculated the heat flow and plotted its distribution map. The results show that the average heat flow in the research area is about 60 mW/m2. It is different from other major energy basins in the North China Plate, but has close relationship with the regional geology and the deep geological setting. The heat flow is comparatively ...  相似文献   
998.
质地对土壤热扩散率的影响   总被引:1,自引:0,他引:1  
土壤热性质的研究是分析地表能量平衡的重要途径之一,土壤热扩散率是表征土壤热性质的重要参数。根据非稳态一维热传导方程的差分解计算了不同质地土壤的热扩散率。结果表明,风干土热扩散率小于1.4×10-3 cm2·s-1,并随着时间的推移逐渐减小;土壤质地越轻土墒条件越好热量传输速度越慢。  相似文献   
999.
Measurements taken between July 2006 to May 2007 at the Maqu station in the Upper Yellow River area were used to study the surface radiation budget and soil water and heat content in this area. These data revealed distinct seasonal variations in downward shortwave radiation, downward longwave radiation, upward longwave radiation and net radiation, with larger values in the summer than in winter because of solar altitudinal angle. The upward shortwave radiation factor is not obvious because of albedo (or snow). Surface albedo in the summer was lower than in the winter and was directly associated with soil moisture and solar altitudinal angle. The annual averaged albedo was 0.26. Soil heat flux, soil temperature and soil water content changed substantially with time and depth. The soil temperature gradient was positive from August to February and was related to the surface net radiation and the heat condition of the soil itself. There was a negative correlation between soil temperature gradient and net radiation, and the correlation coefficient achieved a significance level of 0.01. Because of frozen state of the soil, the maximum soil thermal conductivity value was 1.21 W m−1°C−1 in January 2007. In May 2007, soil thermal conductivity was 0.23 W m−1°C−1, which is the lowest value measured in the study, likely due to the fact that the soil was drier then than in other months. The soil thermal conductivity values for the four seasons were 0.27, 0.38, 0.55 and 0.83 W m−1°C−1, respectively.  相似文献   
1000.
The tectonic framework of China includes major and smaller-scale units that differ in age and in style of tectonomagmatic activity, the latter being related to the thermal history of the lithosphere. Heat flow in the area varies from 25 to 150 mW/m2 or higher, with an average of 58±11 mW/m2. It is high in active faults, rifts, and other structures of extension (or sometimes compression) subject to heating from rising lithospheric and mantle plumes. The current thermal activity in the region is controlled by the Pacific subduction beneath Eurasia in eastern China and mainly by the lateral strain and rotation of the Ordos block associated with the India–Eurasia interaction in central and western China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号