首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   539篇
  免费   60篇
  国内免费   128篇
测绘学   9篇
大气科学   192篇
地球物理   115篇
地质学   242篇
海洋学   87篇
天文学   10篇
综合类   25篇
自然地理   47篇
  2024年   3篇
  2023年   8篇
  2022年   17篇
  2021年   17篇
  2020年   9篇
  2019年   16篇
  2018年   10篇
  2017年   11篇
  2016年   16篇
  2015年   18篇
  2014年   28篇
  2013年   55篇
  2012年   23篇
  2011年   19篇
  2010年   24篇
  2009年   36篇
  2008年   54篇
  2007年   42篇
  2006年   39篇
  2005年   28篇
  2004年   26篇
  2003年   16篇
  2002年   17篇
  2001年   15篇
  2000年   28篇
  1999年   13篇
  1998年   20篇
  1997年   24篇
  1996年   8篇
  1995年   8篇
  1994年   12篇
  1993年   13篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1986年   7篇
  1985年   3篇
  1984年   9篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1977年   1篇
排序方式: 共有727条查询结果,搜索用时 828 毫秒
41.
Mean growing season soil PCO2 data were obtained for 19 regions of the world in nine countries. Bivariate and multiple linear regression analysis with soil log(PCO2) as the dependent variable and TEMP, PRECIP, log(AET), and log(PET) as the four climatic independent variables demonstrated that AET was the best independent predictor of soil PCO2. An improved soil PCO2-AET model was developed by assuming (1) that as AET approaches zero, soil PCO2 approaches the atmospheric value and (2) that there is an upper limit to soil PCO2 at very high AET. This model has the form log(PCO2) = ?3·47 + 2·09 (1 ?e?0·0172 AET) where AET is in mm. It explains 67 per cent of the initial variation in the soil PCO2 data, predicts a soil log(PCO2) of ? 3·47 at AET = 0, and an upper limit of 3·5 per cent (log(PCO2) = ? 1·45) for mean growing season soil PCO2 at AET values of 2000 mm and above. The results of this study suggest that soil PCO2 levels in tropical areas are, on average, higher than those in temperate, alpine, and arctic regions.  相似文献   
42.
Cleaning with hierarchy of CO2‐based solvents is advantageous from an environmental point of view because CO2 is non‐flammable, virtually inert, and abundant. After cleaning, the only waste stuffs generated are the contaminants that are removed from the cleaned parts. The technology is especially well suited for precision cleaning applications in which parts have intricate geometries or for applications in which parts are sensitive to water or high temperature. This review will first introduce aqueous cleaning concepts and mechanism, which is helpful to understand how to design cleaning systems using high pressure CO2. Recent microelectronic processes for cleaning and rising of circuit wafers using CO2‐based solvents are the main focus of the review. Additional cleaning topics include dry cleaning, separation of dyestuffs, and extraction of contaminations from soils and regeneration of catalysts.  相似文献   
43.
Accurate modeling of storage of carbon dioxide (CO2) in heterogeneous aquifers requires experiments of the capillary pressure as function of temperature and pressure. We present a method with which static drainage and imbibition capillary pressures can be measured continuously as a function of saturation at various temperature (T) and pressure (P) conditions. The measurements are carried out at (TP) conditions of practical interest. Static conditions can be assumed as small injection rates are applied. The capillary pressure curves are obtained for the unconsolidated sand–distilled water–CO2 system. The experimental results show a decrease of drainage and imbibition capillary pressure for increasing CO2 pressures and pronounced dissolution rate effects for gaseous CO2. Significant capillary pressure fluctuations and negative values during imbibition are observed at near critical conditions. The measurement procedure is validated by a numerical model that simulates the experiments.  相似文献   
44.
燃煤烟气中SO2治理方法综述   总被引:2,自引:0,他引:2  
对燃煤烟气中SO2的脱除方法进行综述和分析。  相似文献   
45.
Surface NO and NO2 mixing ratios were measured aboard the research vessel Polarstern during the mission ANT VII/1 from 24 September to 5 October 1988. The measurements were taken along the meridian at 30° W in the Atlantic region covering latitudes between 30° N and 30° S. The average mixing ratios were about 12 pptv NO/30 pptv NO2 in the Northern Hemisphere and about 7 pptv NO/22 pptv NO2 in the Southern. Elevated mixing ratios of 20 pptv NO/70 pptv NO2 were found at 12° N (probably due to air masses originating from the surface of West Africa) and in the region of the ITCZ between 8° N and 5° N. Because of probable contamination by the ship, the measured mixing ratios mostly represent upper limits.  相似文献   
46.
Measurements of the sulfur dioxide (SO2) emission rate from three Guatemalan volcanoes provide data which are consistent with theoretical and laboratory studies of eruptive and shallow magma chamber processes. In particular, unerupted magma makes a major contribution to the measured SO2 emission rates at Santiaguito, a continuously erupting dacitic volcanic dome. Varying shallow magma convection rates can explain the variations in SO2 emission rates at Santiaguito. At Fuego, a basaltic volcano currently in repose, SO2 emission rate measurements are consistent with a high level magma body that is crystallizing and releasing volatiles. At Pacaya, a continuously erupting basaltic volcano, recent SO2 emission rate measurements support laboratory simulation studies of strombolian eruptions; these studies indicate that the majority of gas escapes during eruptions and little gas escapes between eruptions.Average SO2 emission rates over the last 20 years for Santiaguito, Fuego and Pacaya are 80, 160 and 260 Mg/d, respectively. On a global scale, these three volcanoes account for 1% of the annual global volcanic output of SO2. Santiaguito and Pacaya, together, emit 6% of the total annual SO2 emitted by continuously erupting volcanoes.Even though SO2 measurements at these volcanoes have been made infrequently and by different investigators, the collective data help to establish a useful baseline by which to judge future changes. A more complete record of SO2 emission rates from these volcanoes could lead to a better understanding of their eruption mechanisms and reduce the impact of their future eruptions on Guatemalan society.  相似文献   
47.
The column amounts of nitrogen dioxide (NO2) and ozone (O3) were measured using a visible spectrometer based on the twilight zenith-sky technique at two observatories located at similar latitudes in the northern part of Japan separated by a distance of 150 km. The measurements began in April 1991 at the Moshiri Observatory (44.4°N, 142.3°E) and in April 1994 at the Rikubetsu Observatory (43.5°N, 143.8°E). Since weather conditions and the possible influence from tropospheric pollution were not always identical at these two observatories, the overall accuracy of the measurements was studied comparing these data sets. The first year data obtained at a solar zenith angle of 90 degrees indicated that the NO2 slant column values at sunrise and sunset agreed within 0.36 and 0.54 × 1016 cm-2, respectively, corresponding to 5 % (June) and to 12 % (December) of the columns. The O3 values agreed within 0.76 × 1019 cm-2, corresponding to 4 % (March) 6 % (August) of the columns, although a part of the difference was systematic. The O3 column amounts were also compared to those obtained by the Dobson spectrometer at Sapporo (43.5°N, 143.8°E), whose latitude is similar to these observatories. When an air mass factor of 17.5 was used, the two-year Moshiri vertical column values agreed with the Dobson direct sun values to within 15 Dobson Units, or 3 6 % of the column. The difference between the two values was found to be due partly to the change in the air mass factor caused by seasonal and day-to-day changes in the shape of the O3 vertical profiles. These results confirm the reliability of the NO2 and O3 measurements by visible spectrometers at these sites for the Network for the Detection of Stratospheric Change (NDSC).  相似文献   
48.
农田生态系统温室气体排放研究进展   总被引:39,自引:0,他引:39  
自1985年起,中国科学院大气物理研究所利用自行设计制造的自动观测仪器系统,历时十六年先后对我国四大类主要水稻产区的甲烷排放规律及其与土壤、气象条件和农业管理措施的关系进行了系统野外观测实验,并对稻田甲烷产生、转化和输送机理进行了理论研究,探讨了控制稻田甲烷排放的实用措施,建立了估算和预测稻田甲烷排放的数值模型.在甲烷排放的时空变化规律和转化率研究方面有一系列新的发现,在稻田甲烷产生率、排放率及其与环境条件的关系方面取得一系列新的成果,以充分证据改变了国际上关于全球和中国稻田甲烷排放总量的估算.在对稻田甲  相似文献   
49.
To prevent the recurrence of a disastrous eruption of carbon dioxide (CO2) from Lake Nyos, a degassing plan has been set up for the lake. Since there are concerns that the degassing of the lake may reduce the stability of the density stratification, there is an urgent need for a simulation tool to predict the evolution of the lake stratification in different scenarios. This paper describes the development of a numerical model to predict the CO2 and dissolved solids concentrations, and the temperature structure as well as the stability of the water column of Lake Nyos. The model is tested with profiles of CO2 concentrations and temperature taken in the years 1986 to 1996. It reproduces well the general mixing patterns observed in the lake. However, the intensity of the mixing tends to be overestimated in the epilimnion and underestimated in the monimolimnion. The overestimation of the mixing depth in the epilimnion is caused either by the parameterization of the k-epsilon model, or by the uncertainty in the calculation of the surface heat fluxes. The simulated mixing depth is highly sensitive to the surface heat fluxes, and errors in the mixing depth propagate from one year to the following. A precise simulation of the mixolimnion deepening therefore requires high accuracy in the meteorological forcing and the parameterization of the heat fluxes. Neither the meteorological data nor the formulae for the calculation of the heat fluxes are available with the necessary precision. Consequently, it will be indispensable to consider different forcing scenarios in the safety analysis in order to obtain robust boundary conditions for safe degassing. The input of temperature and CO2 to the lake bottom can be adequately simulated for the years 1986 to 1996 with a constant sublacustrine source of 18 l s–1 with a CO2 concentration of 0.395 mol l–1 and a temperature of 26 °C. The results of this study indicate that the model needs to be calibrated with more detailed field data before using it for its final purpose: the prediction of the stability and the safety of Lake Nyos during the degassing process.Responsible Editor: Hans Burchard  相似文献   
50.
The inhibition of marine nitrification by ocean disposal of carbon dioxide   总被引:1,自引:0,他引:1  
In an attempt to reduce the threat of global warming, it has been proposed that the rise of atmospheric carbon dioxide concentrations be reduced by the ocean disposal of CO2 from the flue gases of fossil fuel-fired power plants. The release of large amounts of CO2 into mid or deep ocean waters will result in large plumes of acidified seawater with pH values ranging from 6 to 8. In an effort to determine whether these CO2-induced pH changes have any effect on marine nitrification processes, surficial (euphotic zone) and deep (aphotic zone) seawater samples were sparged with CO2 for varying time durations to achieve a specified pH reduction, and the rate of microbial ammonia oxidation was measured spectrophotometrically as a function of pH using an inhibitor technique. For both seawater samples taken from either the euphotic or aphotic zone, the nitrification rates dropped drastically with decreasing pH. Relative to nitrification rates in the original seawater at pH 8, nitrification rates were reduced by ca. 50% at pH 7 and more than 90% at pH 6.5. Nitrification was essentially completely inhibited at pH 6. These findings suggest that the disposal of CO2 into mid or deep oceans will most likely result in a drastic reduction of ammonia oxidation rates within the pH plume and the concomitant accumulation of ammonia instead of nitrate. It is unlikely that ammonia will reach the high concentration levels at which marine aquatic organisms are known to be negatively affected. However, if the ammonia-rich seawater from inside the pH plume is upwelled into the euphotic zone, it is likely that changes in phytoplankton abundance and community structure will occur. Finally, the large-scale inhibition of nitrification and the subsequent reduction of nitrite and nitrate concentrations could also result in a decrease of denitrification rates which, in turn, could lead to the buildup of nitrogen and unpredictable eutrophication phenomena. Clearly, more research on the environmental effects of ocean disposal of CO2 is needed to determine whether the potential costs related to marine ecosystem disturbance and disruption can be justified in terms of the perceived benefits that may be achieved by temporarily delaying global warming.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号