首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   539篇
  免费   60篇
  国内免费   128篇
测绘学   9篇
大气科学   192篇
地球物理   115篇
地质学   242篇
海洋学   87篇
天文学   10篇
综合类   25篇
自然地理   47篇
  2024年   3篇
  2023年   8篇
  2022年   17篇
  2021年   17篇
  2020年   9篇
  2019年   16篇
  2018年   10篇
  2017年   11篇
  2016年   16篇
  2015年   18篇
  2014年   28篇
  2013年   55篇
  2012年   23篇
  2011年   19篇
  2010年   24篇
  2009年   36篇
  2008年   54篇
  2007年   42篇
  2006年   39篇
  2005年   28篇
  2004年   26篇
  2003年   16篇
  2002年   17篇
  2001年   15篇
  2000年   28篇
  1999年   13篇
  1998年   20篇
  1997年   24篇
  1996年   8篇
  1995年   8篇
  1994年   12篇
  1993年   13篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1986年   7篇
  1985年   3篇
  1984年   9篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1977年   1篇
排序方式: 共有727条查询结果,搜索用时 671 毫秒
111.
Solar photocatalytic decolorization and detoxification of batik dye wastewater using titanium dioxide (TiO2) immobilized on poly‐3‐hydroxybutyrate (P(3HB)) film was studied. The effects of initial dye concentration, catalyst concentration, P(3HB) film thickness, and fabrication methods of the nanocomposite films were evaluated against methylene blue, a standard organic dye. It was observed that 0.4 g of P(3HB)‐40 wt% TiO2 removed 96% of the color under solar irradiation. P(3HB) and TiO2, mixed concurrently in chloroform followed by stirring for 24 h showed a more even distribution of the photocatalyst on the polymer surface and yielded almost 100% color removal. The photocatalytic films were able to completely decolorize real industrial batik dye wastewater in 3 h and induced a chemical oxygen demand (COD) reduction of 80%. Reusability of the 0.4 g P(3HB)‐40 wt% TiO2 film in decolorizing the batik dye wastewater was also possible as it gave a high consistent value of decolorization percentage (>80%) even after the sixth repeated usage. Recovery step of the photocatalysts was also not required in this simple treatment system. The decolorized batik dye wastewater had less/no toxic effects on mosquito larvae, Aedes aegypti, and microalgae, Scenedesmus quadricauda indicating simultaneous detoxification process along with the decolorization process.  相似文献   
112.
Isotopic and chemical composition of groundwater from wells and springs, and surface water from the basalt-dominated Axum area (northern Ethiopia) provides evidence for the origin of water and dissolved species. Shallow (depth < 40 m) and deep groundwater are distinguished by both chemical and isotopic composition. Deep groundwater is significantly enriched in dissolved inorganic carbon up to 40 mmol l−1 and in concentrations of Ca2+, Mg2+, Na+ and Si(OH)4 compared to the shallow type.The δ2H and δ18O values of all solutions clearly indicate meteoric origin. Shifts from the local meteoric water line are attributed to evaporation of surface and spring water, and to strong water–rock interaction. The δ13CDIC values of shallow groundwater between −12 and −7‰ (VPDB) display the uptake of CO2 from local soil horizons, whereas δ13CDIC of deep groundwater ranges from −5 to +1‰. Considering open system conditions with respect to gaseous CO2, δ13CDIC = +1‰ of the deep groundwater with highest PCO2 = 10−0.9 atm yields δ13CCO2(gas) ≈ −5‰, which is close to the stable carbon isotopic composition of magmatic CO2. Accordingly, stable carbon isotope ratios within the above range are referred to individual proportions of CO2 from soil and magmatic origin. The uptake of magmatic CO2 results in elevated cations and Si(OH)4 concentrations. Weathering of local basalts is documented by 87Sr/86Sr ratios of the groundwater from 0.7038 to 0.7059. Highest values indicate Sr release from the basement rocks. Besides weathering of silicates, neoformation of solids has to be considered, which results in the formation of, e.g., kaolinite and montmorillonite. In several solutions supersaturation with respect to calcite is reached by outgassing of CO2 from the solution leading to secondary calcite formation.  相似文献   
113.
Injection of carbon dioxide into coal seams is considered to be a potential method for its sequestration away from the atmosphere. However, water present in coals may retard injection: especially if carbon dioxide does not wet the coal as well as water. Thus contact angles in the coal-water-CO2 system were measured using CO2 bubbles in water/coal systems at 40 °C and pressures up to 15 MPa using five bituminous coals. At low pressures, in this CO2/water/coal system, receding contact angles for the coals ranged between 80° to 100°; except for one coal that had both high ash yield and low rank, with a contact angle of 115°, indicating that it was hydrophilic. With increasing pressure, the receding contact angles for the different coals decreased, indicating that they became more CO2-wetting. The relationship between contact angle and pressure was approximately linear. For low ash or high rank coals, at high pressure the contact angle was reduced to 30-50°, indicating the coals became strongly CO2-wetting; that is CO2 fluids will spontaneously penetrate these wet coals. In the case of the coal that was both high ash and hydrophilic, the contact angle did not drop to 90° even at the highest pressures used. These results suggest that CO2 will not be efficiently adsorbed by all wet coals equally well, even at high pressure. It was found that at high pressures (> 2 MPa) the rate of penetration of carbon dioxide into the coals increased rapidly with decreasing contact angle, independently of pressure. Injecting CO2 into wet coals that have both low rank and high ash will not trap CO2 as well as injecting it into high rank or low ash coals.  相似文献   
114.
115.
Cave air PCO2 at two Irish sites varied dramatically on daily to seasonal timescales, potentially affecting the timing of calcite deposition and consequently climate proxy records derived from stalagmites collected at the same sites. Temperature-dependent biochemical processes in the soil control CO2 production, resulting in high summer PCO2 values and low winter values at both sites. Large Large-amplitude, high-frequency variations superimposed on this seasonal cycle reflect cave air circulation. Here we model stalagmite growth rates, which are controlled partly by CO2 degassing rates from drip water, by considering both the seasonal and high-frequency cave air PCO2 variations. Modeled hourly growth rates for stalagmite CC-Bil from Crag Cave in SW Ireland reach maxima in late December (0.063 μm h− 1) and minima in late June/early July (0.033 μm h− 1). For well-mixed ‘diffuse flow’ cave drips such as those that feed CC-Bil, high summer cave air PCO2 depresses summer calcite deposition, while low winter PCO2 promotes degassing and enhances deposition rates. In stalagmites fed by well-mixed drips lacking seasonal variations in δ18O, integrated annual stalagmite calcite δ18O is unaffected; however, seasonality in cave air PCO2 may influence non-conservative geochemical climate proxies (e.g., δ13C, Sr/Ca). Stalagmites fed by ‘seasonal’ drips whose hydrochemical properties vary in response to seasonality may have higher growth rates in summer because soil air PCO2 may increase relative to cave air PCO2 due to higher soil temperatures. This in turn may bias stalagmite calcite δ18O records towards isotopically heavier summer drip water δ18O values, resulting in elevated calcite δ18O values compared to the ‘equilibrium’ values predicted by calcite–water isotope fractionation equations. Interpretations of stalagmite-based paleoclimate proxies should therefore consider the consequences of cave air PCO2 variability and the resulting intra-annual variability in calcite deposition rates.  相似文献   
116.
We suggest that different equations of state (EOS) algorithms can and frequently will provide very different predictions of CO2 migration following injection for sequestration. Rather than carry out an exhaustive examination of all EOS algorithms available, we elected to evaluate this general hypothesis by making detailed comparisons of simulation results of two very common EOS algorithms. We simulated and compared CO2 migration patterns using two fundamentally different EOS algorithms – Modified Redlich-Kwong EOS (MRKEOS) and Span and Wagner EOS (SWEOS). In general, the predictions of thermophysical properties for both algorithms are close, except for a contrast in the predicted fugacity coefficient of CO2, which subsequently propagates to a contrast in predicted solubility in water/brine. Typically, MRKEOS underestimates solubility of CO2 compared to both SWEOS and experimental solubility data. In simulations of CO2 migration, dissolution rates of separate-phase CO2 predicted from the two EOS algorithms were significantly different, even for small contrasts in predicted fluid properties from EOS algorithms, resulting in markedly different migration patterns.  相似文献   
117.
We characterize and quantify volatile emissions at Hot Spring Basin (HSB), a large acid-sulfate region that lies just outside the northeastern edge of the 640 ka Yellowstone Caldera. Relative to other thermal areas in Yellowstone, HSB gases are rich in He and H2, and mildly enriched in CH4 and H2S. Gas compositions are consistent with boiling directly off a deep geothermal liquid at depth as it migrates toward the surface. This fluid, and the gases evolved from it, carries geochemical signatures of magmatic volatiles and water–rock reactions with multiple crustal sources, including limestones or quartz-rich sediments with low K/U (or 40?Ar/4?He). Variations in gas chemistry across the region reflect reservoir heterogeneity and variable degrees of boiling. Gas-geothermometer temperatures approach 300 °C and suggest that the reservoir feeding HSB is one of the hottest at Yellowstone. Diffuse CO2 flux in the western basin of HSB, as measured by accumulation-chamber methods, is similar in magnitude to other acid-sulfate areas of Yellowstone and is well correlated to shallow soil temperatures. The extrapolation of diffuse CO2 fluxes across all the thermal/altered area suggests that 410 ± 140 t d− 1 CO2 are emitted at HSB (vent emissions not included). Diffuse fluxes of H2S were measured in Yellowstone for the first time and likely exceed 2.4 t d− 1 at HSB. Comparing estimates of the total estimated diffuse H2S emission to the amount of sulfur as SO42− in streams indicates ~ 50% of the original H2S in the gas emission is lost into shallow groundwater, precipitated as native sulfur, or vented through fumaroles. We estimate the heat output of HSB as ~ 140–370 MW using CO2 as a tracer for steam condensate, but not including the contribution from fumaroles and hydrothermal vents. Overall, the diffuse heat and volatile fluxes of HSB are as great as some active volcanoes, but they are a small fraction (1–3% for CO2, 2–8% for heat) of that estimated for the entire Yellowstone system.  相似文献   
118.
煤层处置CO2 的二元气- 固耦合数值模拟   总被引:2,自引:0,他引:2  
利用不可开采煤层处置二氧化碳可以有效控制温室气体的排放量并可驱动和增加煤层气资源的开采量。二氧化碳注入煤层处置后引入一个复杂的CH4-CO2二元气体与煤体的气固耦合问题,耦合了二元气体竞争吸附、竞争扩散,气体渗流以及煤体变形过程。基于COMSOL Multiphysics建立了二元气固耦合的有限元数值模型,并应用数值模拟实验对二元气固耦合进行了机理分析。模拟结果表明,CO2注入煤层后不断驱替CH4,CH4组分明显减少;气体吸附引起的煤层膨胀量可以抵消部分有效应力引起的压缩变形,由于CH4-CO2二元气体较单一CH4引起的煤层吸附膨胀量大,二氧化碳注入煤层后可以缓解煤层的压缩变形;不同孔隙压力条件下,吸附膨胀与孔隙压力两者竞争作用引起的煤层净变形不同,而净变形也控制着煤层孔隙压力和渗流率的变化,煤层渗透整体呈现先降后升,模拟进行到4.66×107 s时煤层渗透率发生反弹。  相似文献   
119.
中国对外贸易产生的CO_2排放区位转移分析   总被引:19,自引:0,他引:19  
减缓以CO2为主的温室气体排放所引起的全球气候变化问题越来越为国际社会所瞩目.目前有关的国际协定主要以国家本土温室气体排放为基准核算国家的碳排放责任和减排成效,忽略了国际商品贸易流引起的排放区位与产品消费区位的空间分离.本文利用2000~2006年中国海关货物进出口商品分类数据,采用投入产出法,分析了中国货物进出口贸易产生的CO2排放区位向中国的转移效应.结果表明,中国出口商品内涵的CO2排放量从2000年的9.6亿t增加到2006年的19.1亿t,每年占全国总排放的比重基本在30%-35%.扣除进口商品使我国避免在本土排放的CO2,货物进出口贸易使净转移到我国的CO2排放量至少从2.3亿t增加到7.2亿t,中美贸易顺差、中国与欧盟贸易顺差是产生净转移的主要原因.结论主张相关国际协定从排放区位与消费区位相结合的角度制定温室气体减排政策.  相似文献   
120.
This study reports comparisonsbetween model simulations, based on current sulfurmechanisms, with the DMS, SO2 and DMSOobservational data reported by Bandy et al.(1996) in their 1994 Christmas Island field study. For both DMS and SO2, the model results werefound to be in excellent agreement with theobservations when the observations were filtered so asto establish a common meteorological environment. Thisfiltered DMS and SO2 data encompassedapproximately half of the total sampled days. Basedon these composite profiles, it was shown thatoxidation of DMS via OH was the dominant pathway withno more than 5 to 15% proceeding through Cl atoms andless than 3% through NO3. This analysis wasbased on an estimated DMS sea-to-air flux of 3.4 ×109 molecs cm-2 s-1. The dominant sourceof BL SO2 was oxidation of DMS, the overallconversion efficiency being evaluated at 0.65 ± 0.15. The major loss of SO2 was deposition to theocean's surface and scavenging by aerosol. Theresulting combined first order k value was estimated at 1.6 × 10-5 s-1. In contrast to the DMSand SO2 simulations, the model under-predictedthe observed DMSO levels by nearly a factor of 50. Although DMSO instrument measurement problems can notbe totally ruled out, the possibility of DMSO sourcesother than gas phase oxidation of DMS must beseriously considered and should be explored in futurestudies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号