首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   678篇
  免费   87篇
  国内免费   128篇
测绘学   14篇
地球物理   98篇
地质学   328篇
海洋学   400篇
天文学   4篇
综合类   14篇
自然地理   35篇
  2024年   8篇
  2023年   9篇
  2022年   22篇
  2021年   28篇
  2020年   32篇
  2019年   40篇
  2018年   35篇
  2017年   24篇
  2016年   32篇
  2015年   35篇
  2014年   31篇
  2013年   58篇
  2012年   45篇
  2011年   28篇
  2010年   32篇
  2009年   35篇
  2008年   53篇
  2007年   41篇
  2006年   44篇
  2005年   33篇
  2004年   23篇
  2003年   25篇
  2002年   25篇
  2001年   20篇
  2000年   15篇
  1999年   25篇
  1998年   14篇
  1997年   8篇
  1996年   12篇
  1995年   8篇
  1994年   10篇
  1993年   11篇
  1992年   6篇
  1991年   7篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有893条查询结果,搜索用时 15 毫秒
21.
Danian marine sedimentation in the Paris Basin occurred between two major erosional phases. The earlier was responsible for the stripping of presumably deposited Maastrichtian sediments and of a variable thickness of Campanian chalk. The later occurred during the late Palaeocene and resulted in the erosion of almost all Danian deposits, which are now limited to small and scattered outcrops. One of these outcrops corresponds to reefal and peri‐reefal limestones of middle to late Danian age, exposed in the quarries of Vigny (NW of Paris). Danian deposits here show intricate relations with the surrounding Campanian chalk. Danian sedimentation was contemporaneous with faulting, which generated signifiant sea‐floor relief and resulted in contrasting depositional areas: topographic highs with coralgal reefs, and depressions where calcirudite channel fill accumulated. Normal faulting occurred along WNW–ESE master faults. The generation of submarine fault scarps gave rise to various types of gravity‐driven phenomena, including the sliding and slumping of large blocks of reefal limestone and the deposition of carbonate debris flows. Along with the redeposition of the Danian carbonates, flows of fluidized and reworked Campanian chalk resulted from the peculiar physical properties of the undercompacted chalks. Erosion and faulting occurred predominantly during the Palaeocene and represent a major episode in the physiographic evolution of the Paris Basin.  相似文献   
22.
Effective timescales of coupling within fluvial systems   总被引:1,自引:0,他引:1  
This paper presents a review of the coupling concept in fluvial geomorphology, based mainly on previously published work. Coupling mechanisms link the components of the fluvial system, controlling sediment transport down the system and the propagation of the effects of base-level change up the system. They can be viewed at several scales: at the local scale involving within-hillslope coupling, hillslope-to-channel coupling, and within-channels, tributary junction and reach-to-reach coupling. At larger scales, coupling can be considered as zonal coupling, between major zones of the system or as regional coupling, relating to complete drainage basins. These trends are illustrated particularly by the examples of hillslope-to-channel coupling in the Howgill Fells, northwest England, badland systems in southeast Spain, alluvial fans in Spain, USA and UAE, and base-level-induced dissection of Neogene sedimentary basins in southeast Spain. As the spatial scales increase, so do the timescales involved. Effective temporal scales relate to magnitude and frequency characteristics, recovery time and propagation time, the relative importance changing with the spatial scale. For downsystem coupling at the local scale, the first two are important, with propagation time increasing in importance in larger systems, especially in those involving upsystem coupling related to base-level change. The effective timescales range from the individual event, with a return period of decades, through decadal to century timescales for downsystem coupling, to tens to hundreds of thousands of years for the basinwide response to base-level change. The effective timescales influence the relative importance of factors controlling landform development.  相似文献   
23.
Submarine pyroclastic eruptions at depths greater than a few hundred meters are generally considered to be rare or absent because the pressure of the overlying water column is sufficient to suppress juvenile gas exsolution so that magmatic disruption and pyroclastic activity do not occur. Consideration of detailed models of the ascent and eruption of magma in a range of sea floor environments shows, however, that significant pyroclastic activity can occur even at depths in excess of 3000 m. In order to document and illustrate the full range of submarine eruption styles, we model several possible scenarios for the ascent and eruption of magma feeding submarine eruptions: (1) no gas exsolution; (2) gas exsolution but no magma disruption; (3) gas exsolution, magma disruption, and hawaiian-style fountaining; (4) volatile content builds up in the magma reservoir leading to hawaiian eruptions resulting from foam collapse; (5) magma volatile content insufficient to cause fragmentation normally but low rise speed results in strombolian activity; and (6) volatile content builds up in the top of a dike leading to vulcanian eruptions. We also examine the role of bulk-interaction steam explosivity and contact-surface steam explosivity as processes contributing to volcaniclastic formation in these environments. We concur with most earlier workers that for magma compositions typical of spreading centers and their vicinities, the most likely circumstance is the quiet effusion of magma with minor gas exsolution, and the production of somewhat vesicular pillow lavas or sheet flows, depending on effusion rate. The amounts by which magma would overshoot the vent in these types of eruptions would be insufficient to cause any magma disruption. The most likely mechanism of production of pyroclastic deposits in this environment is strombolian activity, due to the localized concentration of volatiles in magma that has a low rise rate; magmatic gas collects by bubble coalescence, and ascends in large isolated bubbles which disrupt the magma surface in the vent, producing localized blocks, bombs, and pyroclastic deposits. Another possible mode of occurrence of pyroclastic deposits results from vulcanian eruptions; these deposits, being characterized by the dominance of angular blocks of country rocks deposited in the vicinity of a crater, should be easily distinguishable from strombolian and hawaiian eruptions. However, we stress that a special case of the hawaiian eruption style is likely to occur in the submarine environment if magmatic gas buildup occurs in a magma reservoir by the upward drift of gas bubbles. In this case, a layer of foam will build up at the top of the reservoir in a sufficient concentration to exceed the volatile content necessary for disruption and hawaiian-style activity; the deposits and landforms are predicted to be somewhat different from those of a typical primary magmatic volatile-induced hawaiian eruption. Specifically, typical pyroclast sizes might be smaller; fountain heights may exceed those expected for the purely magmatic hawaiian case; cooling of descending pyroclasts would be more efficient, leading to different types of proximal deposits; and runout distances for density flows would be greater, potentially leading to submarine pyroclastic deposits surrounding vents out to distances of tens of meters to a kilometer. In addition, flows emerging after the evacuation of the foam layer would tend to be very depleted in volatiles, and thus extremely poor in vesicles relative to typical flows associated with hawaiian-style eruptions in the primary magmatic gas case. We examine several cases of reported submarine volcaniclastic deposits found at depths as great as 3000 m and conclude that submarine hawaiian and strombolian eruptions are much more common than previously suspected at mid-ocean ridges. Furthermore, the latter stages of development of volcanic edifices (seamounts) formed in submarine environments are excellent candidates for a wide range of submarine pyroclastic activity due not just to the effects of decreasing water depth, but also to: (1) the presence of a summit magma reservoir, which favors the buildup of magmatic foams (enhancing hawaiian-style activity) and episodic dike emplacement (which favors strombolian-style eruptions); and (2) the common occurrence of alkalic basalts, the CO2 contents of which favor submarine explosive eruptions at depths greater than tholeiitic basalts. These models and predictions can be tested with future sampling and analysis programs and we provide a checklist of key observations to help distinguish among the eruption styles.  相似文献   
24.
The purpose of this study was to elucidate the floristic and structural characteristics of simple alluvial fan vegetation of southern Sinai and to relate them to environmental variation. The main question addressed was: how does the floristic composition of fan habitats, species richness and life-form vary in relation to environmental change? Thirty-seven alluvial fans, randomly selected in two mainwadis(WadiFeiran andWadiDahab) were analysed quantitively. Two-way Indicator Species Analysis (TWINSPAN) classification and Canonical Correspondence Analysis (CCA) were applied in successive stages of the data analysis to describe vegetational variation in relation to physical gradients. Seven main clusters of fans were defined on the basis of environmental variation. These clusters are divided into three main groups of species richness. Species richness varied along a moisture gradient. The richest fans were the driest habitats, indicating that maximum species richness did not occur at high moisture availability. The moisture gradient is a complex gradient correlated with elevation, slope, climatic aridity, soil texture and the nature of the soil surface. Fine sand, silt plus clay and calcium carbonate showed significant differences between the internal groups and subgroups of the first and second level of the TWINSPAN classification.  相似文献   
25.
Alluvial fan development in Alpine areas is often affected by catastrophic sedimentary processes associated with extreme ?oods events, causing serious risks for people living on the fans. Hazard assessment in these areas depends on proper identi?cation of the dominant sedimentary processes on the fans. Data from a set of 209 alluvial fans from the central Alps of Italy are presented in this paper and analysed with the help of various statistical techniques (linear regression, principal components analysis, cluster analysis, discriminant analysis and logistic regression). First, we used modern sedimentary facies and historical records (?ood events since 15th century), to distinguish between the two dominant sedimentary processes on alluvial fans: debris ?ows and stream?ows. Then, in order to analyse the main controls on past and present fan processes, 36 morphological, geological and land‐use variables were analysed. As with observations for arid‐environment fans, catchment morphology is the most in?uential factor in the study area, whereas geology and land use are minor controls. The role of climatic change and landsliding within the catchments also seems to be very important and is discussed. Statistical techniques also help in differentiating groups of alluvial fans by sets of controlling factors, including stage and type of evolution. Finally, by using discriminant analysis and logistic regression, we classi?ed alluvial fans according to the dominant sedimentary process, with a success rate ranging between 75 and 92 per cent. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
26.
铜陵矿集区与铜-金(多金属)矿床有关的热液活动主要有两大体系。即与海西期海底喷流沉积有关的热液体系和与矽卡岩矿化有关的燕山期岩浆热液体系。查明这两类热液体系的流体包裹体特征对区域找矿和矿床成因研究都有实际意义。在包裹体岩相学研究基础上,应用ICP-MS技术和热爆提取方法,研究了新桥、冬瓜山、峙门口、铜官山、朝山等矿床具代表性的热液石英中流体包裹体的微量元素、稀土元素特征。结果表明,两类热液体系在流体包裹体特征上有较大的区别,在流体的微量元素和稀土元素特征方面也很不相同。海底喷流沉积体系的热液石英中流体包裹体与岩浆热液体系的相比。稀土总量较高,LREE/HREE比值较大,δEu不明显。且Mo/(W Sn)比值较高,反映流体中成矿物质的深源特征;Ga/T1、Rb/Cs大。Zr/Hf低,也不同于岩浆热液体系。  相似文献   
27.
F. 《Earth》2005,70(3-4):167-202
Sand-rich submarine fans are radial or curved in plan view depending on the slope of the basin floor. They occur isolated or in coalescing systems. The fans' average lateral extent measures close to 25 km and their thickness usually less than 300 m. The thickness of outer fan sequences averages around 120 m and that of middle fan successions around 160 m. Rarely reported inner fan sequences have a maximum thickness of 80 m.

The formation of sand-rich fans is closely related to tectonic activity. Their sediment is coarse-grained and compositionally immature as indicated by significant feldspar content due to close provenance and rapid transport by short rivers with a steep gradient controlled by tectonism. Tectonic activity also provides for narrow shelves making the fans relatively insensitive to sealevel changes. Formation of sand-rich fans typically occurs in restricted continental basins. The tectonic settings are highly variable. Sand-rich fans typically receive their sediment through submarine canyons which intercept sand from longshore drift and/or are fed more or less directly by regional rivers.

The type of ancient fan system (radial, curved, isolated, coalescing) may be identified through paleocurrent map plots, facies map sketches, recognition of lateral thickness variations and sediment influx centers, as well as lateral bed correlations defining the minimum fan extent.

Important in distinguishing different environments of ancient fans are detailed measured sections, their comparison and correlation. Channelized inner fan and middle fan deposits may be distinguished from the unchannelized outer fan successions through bed correlation tests which reflect their different stratigraphic architectures and bedding patterns. Bedding in outer fan deposits (lobes) is relatively simple, parallel, and regular. The lateral bed continuity is relatively high. Channel fills, especially those of middle fan distributary channels, display a complicated bedding pattern with vertical and lateral random distribution of channel fills, axial erosion, and bed convergence towards the channel margins. Channel fills exhibit only linear bed continuity. Thus, the probability in carrying out local to regional scale lateral bed correlations is almost exclusively limited to outer fan deposits.

The measured sections will help further distinguish fan environments by revealing: (1) different facies associations in outer fan sequences (mainly B, C and D) and middle fan successions (mainly A, B, C, D, and channel margin facies); (2) greater average bed and layer thicknesses in middle fan as opposed to outer fan successions (“bed” and “layer” as used herein); (3) more frequent amalgamation surfaces in channel fills than in unchannelized outer fan deposits; (4) more frequent tabular amalgamation surfaces in outer fan sections; (5) more frequent nontabular amalgamation surfaces in channel fills; and (6) more frequent dish structures in middle fan than outer fan successions.

Rarely exposed fan valley fills may be identified by coarse conglomerates. Moreover, in proximity to fan valley fills, relatively mud-rich sediments may be observed that derive from the depositional system of the basin slope.  相似文献   

28.
贾国东  黄国伦 《地学前缘》2005,12(Z1):29-35
沿海地区海底地下水排放在北美和欧洲等发达地区受到了越来越多的重视,被认为是一个重要的海岸带陆海相互作用过程。但这一过程在我国尚未引起足够认识,有关研究极少见。海底地下水排放的研究历史不长,只是近十多年才有了快速的发展,有了越来越多的定量研究成果。其研究方法主要有水文计算法、现场实测法和地球化学示踪法,各种方法之间的对比实验是目前的热点问题。沿海地下水排放具有重要的环境意义,它可以是陆地营养物质和污染物质的一个重要排放通道,可以对海岸带环境产生一定影响。我国沿海地区应该加强有关的研究工作,为海岸带环境管理作出贡献。  相似文献   
29.
30.
Submarine groundwater discharge (SGD) plays an important role in coastal biogeochemical processes and hydrological cycles, particularly off volcanic islands in oligotrophic oceans. However, the spatial and temporal variations of SGD are still poorly understood owing to difficulty in taking rapid SGD measurements over a large scale. In this study, we used four airborne thermal infrared surveys (twice each during high and low tides) to quantify the spatiotemporal variations of SGD over the entire coast of Jeju Island, Korea. On the basis of an analytical model, we found a linear positive correlation between the thermal anomaly and squares of the groundwater discharge velocity and a negative exponential correlation between the anomaly and water depth (including tide height and bathymetry). We then derived a new equation for quantitatively estimating the SGD flow rates from thermal anomalies acquired at two different tide heights. The proposed method was validated with the measured SGD flow rates using a current meter at Gongcheonpo Beach. We believe that the method can be effectively applied for rapid estimation of SGD over coastal areas, where fresh groundwater discharge is significant, using airborne thermal infrared surveys.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号