首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8920篇
  免费   2025篇
  国内免费   2118篇
测绘学   220篇
大气科学   249篇
地球物理   2769篇
地质学   7188篇
海洋学   1101篇
天文学   16篇
综合类   560篇
自然地理   960篇
  2024年   33篇
  2023年   107篇
  2022年   248篇
  2021年   325篇
  2020年   342篇
  2019年   404篇
  2018年   362篇
  2017年   373篇
  2016年   407篇
  2015年   396篇
  2014年   500篇
  2013年   564篇
  2012年   537篇
  2011年   527篇
  2010年   495篇
  2009年   601篇
  2008年   621篇
  2007年   629篇
  2006年   571篇
  2005年   524篇
  2004年   548篇
  2003年   467篇
  2002年   405篇
  2001年   352篇
  2000年   351篇
  1999年   335篇
  1998年   316篇
  1997年   273篇
  1996年   265篇
  1995年   244篇
  1994年   188篇
  1993年   179篇
  1992年   135篇
  1991年   99篇
  1990年   88篇
  1989年   79篇
  1988年   47篇
  1987年   46篇
  1986年   24篇
  1985年   13篇
  1984年   12篇
  1983年   6篇
  1982年   1篇
  1981年   3篇
  1980年   4篇
  1979年   6篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1954年   8篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
171.
The Cenozoic intracontinental Teletsk basin in the Central Asian Altai Mountains is composed of a complexly structured northern and a more simple southern sub-basin. These sub-basins formed in two distinct kinematic stages when first the NNW-striking Teletsk- and then the NE-striking West-Sayan shear zones became reactivated in the Cenozoic under dominant NS-oriented horizontal compression. Although the entire Teletsk basin strikes roughly NS, the southern sub-basin is parallel to the NNW-trending, amphibolite facies Teletsk ductile shear zone, while the northern sub-basin is NS-striking and flanked by differently structured, greenschist facies basement. Basement reactivation closely controlled the southern sub-basin formation, but this is less clear for the northern sub-basin. Contrasts between northern and southern basement and the exclusive occurrence of pseudotachylytes along the margins of the southern basin are explored for their contribution to the formation of the Teletsk basin with two distinct sub-basins.In the ductile shear fabric of the basement flanking the southern sub-basin, concordantly interleaved pseudotachylytes and isolated breccia lenses reflect local brittle deformation along the ductile fabric. The genetic link between breccia lenses and pseudotachylyte occurrences was defined by microstructural investigation. It allows to explore their possible development in a dextral strike–slip zone. These rocks occur in a large fault-bounded segment of the basement. The geometry of the structures in the segment is comparable with a dextral strike–slip sidewall-ripout structure along the Teletsk shear zone. Seismic slip related to pseudotachylytes is attributed to the sudden stress release on the NNW-striking Teletsk shear zone, when the latter became unconstrained by reactivation of the NE-trending West-Sayan fault zone at its northern boundary. The boundary of the sidewall-ripout structure was reactivated as a large listric fault in a later stage. The northern sub-basins roughly develop along an NS strike and are assumed to reflect reactivation of the ductile shear zone underneath the variably structured greenschist facies basement outcropping along the flanks of the sub-basin.  相似文献   
172.
Questions persist concerning the earthquake potential of the populous and industrial Lake Ontario (Canada–USA) area. Pertinent to those questions is whether the major fault zone that extends along the St. Lawrence River valley, herein named the St. Lawrence fault zone, continues upstream along the St. Lawrence River valley at least as far as Lake Ontario or terminates near Cornwall (Ontario, Canada)–Massena (NY, USA). New geological studies uncovered paleotectonic bedrock faults that are parallel to, and lie within, the projection of that northeast-oriented fault zone between Cornwall and northeastern Lake Ontario, suggesting that the fault zone continues into Lake Ontario. The aforementioned bedrock faults range from meters to tens of kilometers in length and display kinematically incompatible displacements, implying that the fault zone was periodically reactivated in the study area. Beneath Lake Ontario the Hamilton–Presqu'ile fault lines up with the St. Lawrence fault zone and projects to the southwest where it coincides with the Dundas Valley (Ontario, Canada). The Dundas Valley extends landward from beneath the western end of the lake and is marked by a vertical stratigraphic displacement across its width. The alignment of the Hamilton–Presqu'ile fault with the St. Lawrence fault zone strongly suggests that the latter crosses the entire length of Lake Ontario and continues along the Dundas Valley.The Rochester Basin, an east–northeast-trending linear trough in the southeastern corner of Lake Ontario, lies along the southern part of the St. Lawrence fault zone. Submarine dives in May 1997 revealed inclined layers of glaciolacustrine clay along two different scarps within the basin. The inclined layers strike parallel to the long dimension of the basin, and dip about 20° to the north–northwest suggesting that they are the result of rigid-body rotation consequent upon post-glacial faulting. Those post-glacial faults are growth faults as demonstrated by the consistently greater thickness, unit-by-unit, of unconsolidated sediments on the downthrown (northwest) side of the faults relative to their counterparts on the upthrown (southeast) side. Underneath the western part of Lake Ontario is a monoclinal warp that displaces the glacial and post-glacial sediments, and the underlying bedrock–sediment interface. Because of the post-glacial growth faults and the monoclinal warp the St. Lawrence fault zone is inferred to be tectonically active beneath Lake Ontario. Furthermore, within the lake it crosses at least five major faults and fault zones and coexists with other neotectonic structures. Those attributes, combined with the large earthquakes associated with the St. Lawrence fault zone well to the northeast of Lake Ontario, suggest that the seismic risk in the area surrounding and including Lake Ontario is likely much greater than previously believed.  相似文献   
173.
A. Wezel  S. Bender 《GeoJournal》2002,57(4):241-249
In the Alexander von Humboldt National Park in eastern Cuba many endemic animals and plants are found in various different natural habitats, which are considered to be the most important ones for in-situ conservation in the entire Insular Caribbean. In some areas of the National Park agriculture is practised. Thus, the objective of this study was to document and analyse the different land use activities and their consequences for local resource management and conservation of biodiversity in two village areas. A particular question was: what has changed since the foundation of the National Park in 1996? As time series data for land use and aerial photographs were not available for this part of Cuba, a qualitative evaluation was carried out. For this, six different land use units were mapped in 2001 and additional information gathered for areas with special interest related to sustainable land use and resource conservation. Although most parts of the study area are influenced to various degrees by human impact, the different types of land use seem presently not to have a crucial or detrimental impact on the land resources of the Alexander von Humboldt National Park. However, exploitation of the natural resources in certain areas could be improved with different management options to reach sustainability as well as to meet the conservation objectives of the National Park. This includes reduced or abandoned agricultural use of steep slopes to reduce erosion risk as well as a facilitated regeneration of natural vegetation in many parts of the study area to be able to conserve the high valuable biodiversity of the Park. Environmental education seems to have played an important and successful role since the foundation of the Park in 1996. Since then, cropping on steep slopes as well as illegal logging and poaching could be reduced.  相似文献   
174.
扎赉诺尔煤田地处山前,有利的地理环境条件形成了独特的水文地质特征—地下水的垂直分带和地下水顺层径流。其特有的水文地球化学环境导致了地下水成分的差异性。本文从水文地球化学的角度,对煤田地下水的水文地球化学特征及成因进行了论述分析。  相似文献   
175.
The peraluminous tonalite–monzogranite Port Mouton Pluton is a petrological, geochemical, structural, and geochronological anomaly among the many Late Devonian granitoid intrusions of the Meguma Lithotectonic Zone of southern Nova Scotia. The most remarkable structural feature of this pluton is a 4-km-wide zone of strongly foliated (040/subvertical) monzogranites culminating in a narrow (10–30 m), straight, zone of compositionally banded rocks that extends for at least 3 km along strike. The banded monzogranites consist of alternating melanocratic and leucocratic compositions that are complementary to the overall composition of that part of the pluton, suggesting an origin by mineral–melt and mineral–mineral sorting. Biotite and feldspar are strongly foliated in the plane of the compositional bands. These compositional variations and foliations originated by a process of segregation flow during shearing of the main magma with a crystallinity of 55–75%. Subsequent minor brittle fracturing of feldspars, twinning of microcline, development of blocky sub-grains in quartz, and kinking of micas demonstrate overprinting by a high-temperature deformation straddling the monzogranite solidus. Small folds and late sigmoidal dykes indicate dextral movement on the shear zone. This Port Mouton Shear Zone (PMSZ) is approximately co-linear with the only outcrops of Late Devonian mafic intrusions in the area, two of which are syn-plutonic with well-developed mingling textures in the marginal tonalite of the Port Mouton Pluton. Also closely co-linear with the mafic intrusions are a granitoid dyke that extends well beyond the outer contact of the Port Mouton Pluton, a swarm of large aligned angular xenolithic slabs, a zone of thin wispy schlieren banding, a large Be-bearing pegmatite, and a breccia pipe with abundant garnetiferous metapelitic xenoliths. In various ways, the shear zone may control all of these features. The Port Mouton Shear Zone is parallel to many other NE-trending faults and shear zones in the northern Appalachians, probably related to the docking of the Meguma Zone along the Cobequid–Chedabucto Fault system.  相似文献   
176.
Analysis of monthly momentum transport of zonal waves at 850 hPa for the period 1979 to 1993, between ‡S and ‡N for January to April, using zonal (u) and meridional (v) components of wind taken from the ECMWF reanalysis field, shows a positive correlation (.1% level of significance) between the Indian summer monsoon rainfall (June through September) and the momentum transport of wave zero TM(0) over latitudinal belt between 25‡S and 5‡N (LB) during March. Northward (Southward) TM(0) observed in March over LB subsequently leads to a good (drought) monsoon season over India which is found to be true even when the year is marked with the El-Nino event. Similarly a strong westerly zone in the Indian Ocean during March, indicates a good monsoon season for the country, even if the year is marked with El-Nino. The study thus suggests two predictors, TM(0) over LB and the strength of westerly zone in the Indian Ocean during March.  相似文献   
177.
Sm-Nd isotopic compositions of eight lamprophyre samples, which come from the Gezhen gold-bearing shear zone on western Hainan Island, are measured. The Sm-Nd isochron age is 495.98±13.14 Ma, (143Nd/144Nd) 0=0.512094, εNd(t) ranges from +1.80 to +2.00 and TDM from 982 Ma to 1196 Ma (average: 1060 Ma). The authors point out that the whole-rock Sm-Nd isochron age (495.98 ± 13.14 Ma) really represents the petrogenetic age of lamprophyre and the time of magmatism during subsequent subduction.  相似文献   
178.
New field, geochronological, geochemical and biostratigraphical data indicate that the central and northern parts of the Cordillera Occidental of the Andes of Ecuador comprise two terranes. The older (Pallatanga) terrane consists of an early to late (?) Cretaceous oceanic plateau suite, late Cretaceous marine turbidites derived from an unknown basaltic to andesitic volcanic source, and a tectonic mélange of probable late Cretaceous age. The younger (Macuchi) terrane consists of a volcanosedimentary island arc sequence, derived from a basaltic to andesitic source. A previously unidentified, regionally important dextral shear zone named the Chimbo-Toachi shear zone separates the two terranes. Regional evidence suggests that the Pallatanga terrane was accreted to the continental margin (the already accreted Cordillera Real) in Campanian times, producing a tectonic mélange in the suture zone. The Macuchi terrane was accreted to the Pallatanga terrane along the Chimbo-Toachi shear zone during the late Eocene, probably in a dextral shear regime. The correlation of Cretaceous rocks and accretionary events in the Cordillera Occidental of Ecuador and Colombia remains problematical, but the late Eocene event is recognised along the northern Andean margin.  相似文献   
179.
Introduction It is found that there are some relationships between the thermal structures of subduction zones and the deep seismicity, while the mechanism relates the thermal structure and the deep seismicity is still unsure (Helffrich, Brodholt, 1991; Furukawa, 1994; Kirby, et al, 1996). From 1980s, geoscientists have constituted a series of numerical simulations on the stress states of subduction slabs. Based on the kinetic computation of Sung and Burns (1976a, b), Goto, et al (1983, 1987…  相似文献   
180.
This paper is the first in a two-part series that discusses the principal axes of M-DOF structures subjected to static and dynamic loads. The primary purpose of this series is to understand the magnitude of the dynamic response of structures to enable better design of structures and control modification devices/systems. Under idealized design conditions, the structural responses are obtained by using single direction input ground motions in the direction of the intended control devices/systems,and by assuming that the responses of the structure is decoupleable in three mutually perpendicular directions. This standard practice has been applied to both new and retrofitted structures using various seismic protective systems. Very limited information is available on the effects of neglecting the impact of directional couplings (cross effects - of which torsion is a component) of the dynamic response of structures. In order to quantify such effects, it is necessary to examine the principal axes of structures under both static and dynamic loading.This first paper deals with quantitative definitions of principal axes and "cross effects" of three-dimensional structures under static load by using linear algebra. It shows theoretically that, for three-dimensional structures, such principal axes rarely exist. Under static loading conditions, the cross effect is typically small and negligible from the viewpoint of engineering applications. However, it provides the theoretical base for subsequent quantification of the response couplings under dynamic loads, which is reported in part Ⅱ of this series.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号