首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5709篇
  免费   903篇
  国内免费   962篇
测绘学   886篇
大气科学   228篇
地球物理   1711篇
地质学   3356篇
海洋学   642篇
天文学   36篇
综合类   306篇
自然地理   409篇
  2024年   16篇
  2023年   60篇
  2022年   152篇
  2021年   173篇
  2020年   183篇
  2019年   262篇
  2018年   198篇
  2017年   248篇
  2016年   210篇
  2015年   227篇
  2014年   288篇
  2013年   377篇
  2012年   377篇
  2011年   383篇
  2010年   316篇
  2009年   396篇
  2008年   398篇
  2007年   390篇
  2006年   388篇
  2005年   327篇
  2004年   319篇
  2003年   291篇
  2002年   186篇
  2001年   191篇
  2000年   191篇
  1999年   177篇
  1998年   150篇
  1997年   127篇
  1996年   125篇
  1995年   84篇
  1994年   77篇
  1993年   67篇
  1992年   52篇
  1991年   26篇
  1990年   38篇
  1989年   25篇
  1988年   13篇
  1987年   17篇
  1986年   16篇
  1985年   8篇
  1984年   8篇
  1983年   4篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有7574条查询结果,搜索用时 343 毫秒
121.
中国西北叠合盆地的主要构造特征   总被引:7,自引:2,他引:7  
探讨了中国西北地区大型叠合含油气盆地的主要特征 ,研究表明 ,在中国西北叠合盆地发展演化过程中 ,构造变革和构造耦合起着主导作用。构造变革包括大地构造格局的转变、沉积区和剥蚀区的转换、盆地类型的转换、大型区域性不整合的出现以及发生盆地构造反转等 ,这种构造变革具有多期性。叠合盆地构造耦合的方式主要涉及深部和浅部构造的耦合和盆山耦合等。盆山转换、盆山过渡带深部浅部构造的耦合、盆地沉降与造山带隆升耦合以及不同方向构造的耦合 ,反映了盆山耦合的多样性和复杂性。中国西北叠合盆地构造特征主要表现为构造的分层性、分带性、分段性、交叉性以及区域构造应力场的多变性 ,喜马拉雅运动对于中国西北叠合盆地最后的构造改造以及构造定型起着重要的制约作用。  相似文献   
122.
河南省文峪金矿床构造控矿规律研究   总被引:6,自引:2,他引:6       下载免费PDF全文
峪金矿床是小秦岭金矿带内一大型金矿床,属韧—脆性叠加剪切带石英脉型金矿,构造是其首要控矿因素。早期韧性剪切带只对矿脉起宏观控制作用。晚期的脆性断裂为含金石英脉的直接控矿构造。成矿期脆性断裂的多次继承性活动分别控制了热液期4个成矿阶段。脆性断裂形成的空间形态对矿体形态产状具控制作用。有利的矿化富集部位为:①显示压扭性质的近东西向断裂沿走向产状变化处,沿倾向由陡变缓处,断裂面的凹凸转变处;②断裂分支复合部位;③成矿期断裂多次脉动的启张部位;④成矿期断裂构造继承性活动强的部位等。在构造控矿研究的基础上,结合前人部分研究成果。构建了该矿床构造控矿模式。  相似文献   
123.
1 Background of the new national seismic zoning map The policy of seismic disaster mitigation in the Chinese mainland is prevention first. According to the law, the earthquake design for ordinary structures must fit the demand of national seismic zoning map. Seismic zoning map is the basis of the earthquake design (TANG, 1998; WU, et al, 1998). The seismic zoning map must be updated with the progress in methodology and accumula-tion of the data. There are three generations of national seis…  相似文献   
124.
During strong ground motion it is expected that extended structures (such as bridges) are subjected to excitation that varies along their longitudinal axis in terms of arrival time, amplitude and frequency content, a fact primarily attributed to the wave passage effect, the loss of coherency and the role of local site conditions. Furthermore, the foundation interacts with the soil and the superstructure, thus significantly affecting the dynamic response of the bridge. A general methodology is therefore set up and implemented into a computer code for deriving sets of appropriately modified time histories and spring–dashpot coefficients at each support of a bridge with account for spatial variability, local site conditions and soil–foundation–superstructure interaction, for the purposes of inelastic dynamic analysis of RC bridges. In order to validate the methodology and code developed, each stage of the proposed procedure is verified using recorded data, finite‐element analyses, alternative computer programs, previous research studies, and closed‐form solutions wherever available. The results establish an adequate degree of confidence in the use of the proposed methodology and code in further parametric analyses and seismic design. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
125.
The methodology for dealing with spatial variability of ground motion, site effects and soil–structure interaction phenomena in the context of inelastic dynamic analysis of bridge structures, and the associated analytical tools established and validated in a companion paper are used herein for a detailed parametric analysis, aiming to evaluate the importance of the above effects in seismic design. For a total of 20 bridge structures differing in terms of structural type (fundamental period, symmetry, regularity, abutment conditions, pier‐to‐deck connections), dimensions (span and overall length), and ground motion characteristics (earthquake frequency content and direction of excitation), the dynamic response corresponding to nine levels of increasing analysis complexity was calculated and compared with the ‘standard’ case of a fixed base, uniformly excited, elastic structure for which site effects were totally ignored. It is concluded that the dynamic response of RC bridges is indeed strongly affected by the coupling of the above phenomena that may adversely affect displacements and/or action effects under certain circumstances. Evidence is also presented that some bridge types are relatively more sensitive to the above phenomena, hence a more refined analysis approach should be considered in their case. Copyright @ 2003 John Wiley & Sons, Ltd.  相似文献   
126.
Shear‐wall dominant multistorey reinforced concrete structures, constructed by using a special tunnel form technique are commonly built in countries facing a substantial seismic risk, such as Chile, Japan, Italy and Turkey. In spite of their high resistance to earthquake excitations, current seismic code provisions including the Uniform Building Code (International Conference of Building Officials, Whittier, CA, 1997) and the Turkish Seismic Code (Specification for Structures to be Built in Disaster Areas, Ankara, Turkey, 1998) present limited information for their design criteria. In this study, consistency of equations in those seismic codes related to their dynamic properties are investigated and it is observed that the given empirical equations for prediction of fundamental periods of this specific type of structures yield inaccurate results. For that reason, a total of 80 different building configurations were analysed by using three‐dimensional finite‐element modelling and a set of new empirical equations was proposed. The results of the analyses demonstrate that given formulas including new parameters provide accurate predictions for the broad range of different architectural configurations, roof heights and shear‐wall distributions, and may be used as an efficient tool for the implicit design of these structures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
127.
This paper presents a statistical performance analysis of a semi‐active structural control system for suppressing the vibration response of building structures during strong seismic events. The proposed semi‐active mass damper device consists of a high‐frequency mass damper with large stiffness, and an actively controlled interaction element that connects the mass damper to the structure. Through actively modulating the operating states of the interaction elements according to pre‐specified control logic, vibrational energy in the structure is dissipated in the mass damper device and the vibration of the structure is thus suppressed. The control logic, categorized under active interaction control, is defined directly in physical space by minimizing the inter‐storey drift of the structure to the maximum extent. This semi‐active structural control approach has been shown to be effective in reducing the vibration response of building structures due to specific earthquake ground motions. To further evaluate the control performance, a Monte Carlo simulation of the seismic response of a three‐storey steel‐framed building model equipped with the proposed semi‐active mass damper device is performed based on a large ensemble of artificially generated earthquake ground motions. A procedure for generating code‐compatible artificial earthquake accelerograms is also briefly described. The results obtained clearly demonstrate the effectiveness of the proposed semi‐active mass damper device in controlling vibrations of building structures during large earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
128.
Results of a detailed statistical study of constant relative strength inelastic displacement ratios to estimate maximum lateral inelastic displacement demands on existing structures from maximum lateral elastic displacement demands are presented. These ratios were computed for single‐degree‐of‐freedom systems with different levels of lateral strength normalized to the strength required to remain elastic when subjected to a relatively large ensemble of recorded earthquake ground motions. Three groups of soil conditions with shear wave velocities higher than 180m/s are considered. The influence of period of vibration, level of lateral yielding strength, site conditions, earthquake magnitude, distance to the source, and strain‐hardening ratio are evaluated and discussed. Mean inelastic displacement ratios and those associated with various percentiles are presented. A special emphasis is given to the dispersion of these ratios. It is concluded that distance to the source has a negligible influence on constant relative strength inelastic displacement ratios. However, for periods smaller than 1s earthquake magnitude and soil conditions have a moderate influence on these ratios. Strain hardening decreases maximum inelastic displacement at a fairly constant rate depending on the level of relative strength for periods of vibration longer than about 1.0s while it decreases maximum inelastic displacement non‐linearly as the period of vibration shortens and as the relative‐strength ratio increases for periods of vibration shorter than 1.0s. Finally, results from non‐linear regression analyses are presented that provide a simplified expression to be used to approximate mean inelastic displacement ratios during the evaluation of existing structures built on firm sites. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
129.
In the new trend of seismic design methodology, the static pushover analysis is recommended for simple or regular structures whilst the time‐history analysis is recommended for complex structures. To this end, the applicable range of the pushover analysis has to be clarified. This study aims at investigating the applicability of pushover analysis to multi‐span continuous bridge systems with thin‐walled steel piers. The focus is concentrated on the response demand predictions in longitudinal or transverse directions. The pushover analysis procedure for such structures is firstly summarized and then parametric studies are carried out on bridges with different types of superstructure‐pier bearing connections. The considered parameters, such as piers' stiffness distribution and pier–0.5ptdeck stiffness ratio, are varied to cover both regular and irregular structures. Finally, the relation of the applicability of pushover analysis to different structural formats is demonstrated and a criterion based on the higher modal contribution is proposed to quantitatively specify the applicable range. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
130.
A predictive instantaneous optimal control (PIOC) algorithm is proposed for controlling the seismic responses of elastic structures. This algorithm compensates for the time delay that happens in practical control applications by predicting the structural response over a period that equals the time delay, and by substituting the predicted response in the instantaneous optimal control (IOC) algorithm. The unique feature of this proposed PIOC algorithm is that it is simple and at the same time compensates for the time delay very effectively. Numerical examples of single degree of freedom structures are presented to compare the performance of PIOC and IOC systems for various time delay magnitudes. Results show that a time delay always causes degradation of control efficiency, but PIOC can greatly reduce this degradation compared to IOC. The effects of the structure's natural periods and the choice of control gains on the degradation induced by the time delay are also analyzed. Results show that shorter natural periods and larger control gains are both more sensitive and more serious to the degradation of control efficiency. Finally, a practical application of PIOC is performed on a six‐story moment‐resisting steel frame. It is demonstrated that PIOC contributes significantly to maintain stability in multiple degree of freedom structures, and at the same time PIOC has a satisfactory control performance. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号