首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5731篇
  免费   972篇
  国内免费   870篇
测绘学   1748篇
大气科学   589篇
地球物理   1614篇
地质学   1840篇
海洋学   612篇
天文学   63篇
综合类   627篇
自然地理   480篇
  2024年   15篇
  2023年   77篇
  2022年   178篇
  2021年   202篇
  2020年   237篇
  2019年   335篇
  2018年   218篇
  2017年   317篇
  2016年   313篇
  2015年   346篇
  2014年   334篇
  2013年   407篇
  2012年   410篇
  2011年   405篇
  2010年   274篇
  2009年   368篇
  2008年   350篇
  2007年   382篇
  2006年   373篇
  2005年   288篇
  2004年   280篇
  2003年   209篇
  2002年   188篇
  2001年   149篇
  2000年   135篇
  1999年   124篇
  1998年   119篇
  1997年   92篇
  1996年   84篇
  1995年   63篇
  1994年   55篇
  1993年   40篇
  1992年   40篇
  1991年   18篇
  1990年   33篇
  1989年   27篇
  1988年   25篇
  1987年   17篇
  1986年   5篇
  1985年   6篇
  1984年   7篇
  1983年   3篇
  1982年   5篇
  1981年   6篇
  1980年   3篇
  1979年   3篇
  1977年   3篇
  1976年   1篇
  1972年   1篇
  1954年   3篇
排序方式: 共有7573条查询结果,搜索用时 656 毫秒
91.
杨彦军  杨宇  张文喜 《矿物岩石》2003,23(2):108-110
针对开发早期气田缺乏产能试井资料的实际情况,由于无法用传统的压力降法计算产能方程,故而基于最优化算法,提出了一种利用稳定生产数据和井控储量求取气井产能方程系数的新方法。在只知道稳定生产数据情况下便可进行计算分析。该方法在气田进行了实际应用,并和实际资料以及传统试凑法计算的结果进行了比较,表明方法的计算结果较为可靠。  相似文献   
92.
地下水流动对土体产生渗透力;当渗透力大于土体的抗剪强度,土体破坏,也就是当施工造成地下水水力坡度超过砂层的临界水力坡度即产生流砂现象.运用水文地质工程地质学方面的原理其处理方法有两类:—是莫尔一库仑法:即c法和φ法;二是临界水力坡度法(Ic法).  相似文献   
93.
基坑支护结构水平变形预测的遗传神经网络方法   总被引:2,自引:2,他引:2  
采用遗传算法和误差反向传播算法相结合的混合算法来训练前馈人工神经网络,先用遗传学习算法进行全局训练,再用BP算法进行精确训练。就遗传算法过程中的选择、变异进行了探索,提出了用BP网络训练产生变异的遗传算法。作为实例,将该方法应用于预测基坑支护结构水平变形中。结果表明,该方法有收敛速度较快、预测精度高等优点。  相似文献   
94.
梯度法在水文地质参数估值中的应用   总被引:7,自引:1,他引:7  
根据地下水的抽水试验求含水层的导水系数和储水系数时,传统的计算方法是配线法和直线图解法。这两种方法比较繁琐,且人为误差较大。本文运用数学模型的最优化方法即梯度法,并借助于计算机编程,实现了水文地质参数的数值求解。计算结果能消除人为误差,准确反映含水层的参数特征。  相似文献   
95.
浅水方程数值计算方法的研究   总被引:1,自引:5,他引:1       下载免费PDF全文
求解以水位为变量的连续方程,并根据Navier-Stokes方程压力修正算法的基本思想,建立了浅水方程的水位修正算法,放宽了对离散时间步长的限制.通过对离散方程系数矩阵的重新构造,建立了高分辨率有限元格式,该格式既具有较高的离散精度又避免了数值解的伪振荡.对动量方程的阻力项做负坡线性化处理,提高了露滩计算的稳定性.数值模拟结果与解析解吻合良好,表明所建立的数值计算方法是正确的和可靠的.  相似文献   
96.
This paper concerns the seismic response of structures isolated at the base by means of High Damping Rubber Bearings (HDRB). The analysis is performed by using a stochastic approach, and a Gaussian zero mean filtered non‐stationary stochastic process is used in order to model the seismic acceleration acting at the base of the structure. More precisely, the generalized Kanai–Tajimi model is adopted to describe the non‐stationary amplitude and frequency characteristics of the seismic motion. The hysteretic differential Bouc–Wen model (BWM) is adopted in order to take into account the non‐linear constitutive behaviour both of the base isolation device and of the structure. Moreover, the stochastic linearization method in the time domain is adopted to estimate the statistical moments of the non‐linear system response in the state space. The non‐linear differential equation of the response covariance matrix is then solved by using an iterative procedure which updates the coefficients of the equivalent linear system at each step and searches for the solution of the response covariance matrix equation. After the system response variance is estimated, a sensitivity analysis is carried out. The final aim of the research is to assess the real capacity of base isolation devices in order to protect the structures from seismic actions, by avoiding a non‐linear response, with associated large plastic displacements and, therefore, by limiting related damage phenomena in structural and non‐structural elements. In order to attain this objective the stochastic response of a non‐linear n‐dof shear‐type base‐isolated building is analysed; the constitutive law both of the structure and of the base devices is described, as previously reported, by adopting the BWM and by using appropriate parameters for this model, able to suitably characterize an ordinary building and the base isolators considered in the study. The protection level offered to the structure by the base isolators is then assessed by evaluating the reduction both of the displacement response and the hysteretic dissipated energy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
97.
慕士塔格峰洋布拉克冰川消融的观测分析   总被引:6,自引:11,他引:6  
2001年7月4日至8月8日,在慕士塔格峰西侧的洋布拉克冰川海拔4600~4460m区间的冰舌段,进行了短期的冰面消融观测.慕士塔格峰冰川区暖期短,冰面强消融时期比较集中.观测期间,冰面纯消融厚度为640~1260mm水层,日平均消融厚度达26~39.6mm,推算冰舌区年消融量不低于1700~2000mm,比青藏高原内部的冰川消融强烈的多.7月21-22日出现最大消融值,在海拔4460m和4600m,日消融量分别为144.5mm和59.5mm.冰面消融随海拔上升而减小,日平均消融梯度:在裸露冰区为0.40~0.55mm·10m-1;在表碛覆盖区为0.21~3.53mm·10m-1,变幅较裸露冰区大.按裸露冰区的消融梯度计算出海拔4800m处的日平均消融量,和过去的研究资料比较,2001年冰面日平均消融量较1987年和1960年的消融量大,反映出慕士塔格峰区影响冰川消融的气候与全球气候变暖的特点是一致的.  相似文献   
98.
It gradually becomes a common work using large seismic wave data to obtain source parameters, such as seismic moment, break radius, stress drop, with completingof digital seismic network in China (Hough, et al, 1999; Bindi, et al, 2001). These parameters are useful on earthquake prediction and seismic hazard analysis.Although the computation methods of source parameters are simple in principle and the many research works have been done, it is not easy to obtain the parameters accurately. There are two factors affecting the stability of computation results. The first one is the effect of spread path and site respond on signal. According to the research results, there are different geometrical spreading coefficients on different epicenter distance. The better method is to introduce trilinear geometrical spreading model (Atkinson, Mereu, 1992; Atkinson, Boore, 1995; WONG, et al, 2002). In addition, traditional site respond is estimated by comparing with rock station, such as linear inversion method (Andrews, 1982), but the comparative estimation will introduce some errors when selecting different stations. Some recent research results show that site respond is not flat for rock station (Moya, et al, 2000; ZHANG,. et al, 2001; JIN, et al, 2000; Dutta, et al, 2001). The second factor is to obtain low-frequency level and corner frequency fromdisplacement spectrum. Because the source spectrum model is nonlinear function,these values are obtained by eye. The subjectivity is strong. The small change of corner frequency will affect significantly the result of stress drop.  相似文献   
99.
This paper presents the extension of the self-calibrating method to the coupled inverse modelling of groundwater flow and mass transport. The method generates equally likely solutions to the inverse problem that display the variability as observed in the field and are not affected by a linearisation of the state equations. Conditioning to the state variables is measured by an objective function including, among others, the mismatch between the simulated and measured concentrations. Conditioning is achieved by minimising the objective function by gradient-based methods. The gradient contains the partial derivatives of the objective function with respect to: log conductivities, log storativities, prescribed heads at boundaries, retardation coefficients and mass sources. The derivatives of the objective function with respect to log conductivity are the most cumbersome and need the most CPU-time to be evaluated. For this reason, to compute this derivative only advective transport is considered. The gradient is calculated by the adjoint-state method. The method is demonstrated in a controlled, synthetic study, in which the worth of concentration data is analysed. It is shown that concentration data are essential to improve transport predictions and also help to improve aquifer characterisation and flow predictions, especially in the upstream part of the aquifer, even in the case that a considerable amount of other experimental data like conductivities and heads are available. Besides, conditioning to concentration data reduces the ensemble variances of estimated transmissivity, hydraulic head and concentration.  相似文献   
100.
遗传算法与单纯形法组合的影像纹理分类方法   总被引:7,自引:3,他引:7  
郑肇葆 《测绘学报》2003,32(4):325-329
提出遗传算法(简称GA)与单纯形法组合的影像纹理分类方法(简称GASPX)。单纯形法是一种局部搜索方法,它通过反射,扩张,收缩操作,求得新的单纯形点,组成新单纯形,新单纯形比前一个单纯形更接近局部最优解。这种寻优方法收敛速度快,它与GA组合起来可以改善单独使用GA收敛速度慢的缺陷。由于在组合算法中是多个单纯形的局部区域的并行搜索,避免GA优化过程中过早收敛于局部最优解的现象出现。通过5种不同类别航空影像纹理识别的试验,并与GA的结果作对比,结果表明GASPX法优于GA法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号