首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2648篇
  免费   606篇
  国内免费   251篇
测绘学   172篇
大气科学   222篇
地球物理   1906篇
地质学   381篇
海洋学   315篇
天文学   259篇
综合类   125篇
自然地理   125篇
  2024年   7篇
  2023年   28篇
  2022年   62篇
  2021年   95篇
  2020年   97篇
  2019年   105篇
  2018年   103篇
  2017年   101篇
  2016年   90篇
  2015年   114篇
  2014年   129篇
  2013年   122篇
  2012年   116篇
  2011年   142篇
  2010年   139篇
  2009年   133篇
  2008年   152篇
  2007年   171篇
  2006年   160篇
  2005年   164篇
  2004年   162篇
  2003年   164篇
  2002年   125篇
  2001年   96篇
  2000年   103篇
  1999年   93篇
  1998年   85篇
  1997年   74篇
  1996年   66篇
  1995年   71篇
  1994年   46篇
  1993年   50篇
  1992年   35篇
  1991年   25篇
  1990年   20篇
  1989年   22篇
  1988年   15篇
  1987年   7篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1978年   1篇
  1977年   1篇
  1954年   1篇
排序方式: 共有3505条查询结果,搜索用时 234 毫秒
991.
王家骥  陈力  陈鼎 《天文学报》2005,46(2):207-215
利用上海天文台相隔29年的两期天体测量底片,测量了球状星团M79的绝对自行,采用Harris给出的这个星团离开太阳的距离和视向速度数据,计算了星团当前的空间运动速度;根据银河系引力势模型,进一步计算了该星团在银河系中的轨道参数,还对利用自行数据所作的球状星团运动学研究的不确定性作了讨论。  相似文献   
992.
Various sets of periodic solutions of a 3-D Hamiltonian system crossing perpendicularly thez=0 plane are presented. These sets form a main multi-spiral pattern and two secondary ones which have three focal points. The main pattern is inside a stochastic region that surrounds a simple complex unstable periodic orbit, while the two secondary patterns are parts of a stochastic sea. Through these regions the stochastic region communicates with the stochastic sea.  相似文献   
993.
This paper deals with the plane motion of a star in the gravitational field of a system which is in a steady state and rotates with a constant angular velocity. For these systems a class of potentials permitting a local integral, linear with respect to the velocity components, has been found. The concept of the local integral itself was introduced by one of the authors of the present paper (Antonov, 1981). A detailed model has been constructed. The corresponding domain of the particle motion and the form of the trajectory coils have been determined. The result is compared with the motion in a more realistic potential.  相似文献   
994.
We derive an algebraic mapping for an autonomous, two-dimensional galactic type Hamiltonian in the 1/1 resonance case. We use the mapping to study the stability of the periodic orbits. Using the xp x Poincaré surface section, we compare the results of the mapping with those found by the numerical integration of the full equations of motion. For small values of the perturbation the results of the two methods are in very good agreement while satisfactory agreement is obtained for larger perturbations.  相似文献   
995.
996.
We used a multipolar code to create, through the dissipationless collapses of systems of 1,000,000 particles, three self-consistent triaxial stellar systems with axial ratios corresponding to those of E4, E5 and E6 galaxies. The E5 and E6 models have small, but significant, rotational velocities although their total angular momenta are zero, that is, they exhibit figure rotation; the rotational velocity decreases with decreasing flattening of the models and for the E4 model it is essentially zero. Except for minor changes, probably caused by unavoidable relaxation effects, the systems are highly stable. The potential of each system was subsequently approximated with interpolating formulae yielding smooth potentials, stationary for the non-rotating model and stationary in the rotating frame for the rotating ones. The Lyapunov exponents could then be computed for randomly selected samples of the bodies that make up the different systems, allowing the recognition of regular and partially and fully chaotic orbits. Finally, the regular orbits were Fourier analyzed and classified using their locations on the frequency map. As it could be expected, the percentages of chaotic orbits increase with the flattening of the system. As one goes from E6 through E4, the fraction of partially chaotic orbits relative to that of fully chaotic ones increases, with the former surpassing the latter in model E4; the likely cause of this behavior is that triaxiality diminishes from E6 through E4, the latter system being almost axially symmetric. We especulate that some of the partially chaotic orbits may obey a global integral akin to the long axis component of angular momentum. Our results show that is perfectly possible to have highly stable triaxial models with large fractions of chaotic orbits, but such systems cannot have constant axial ratios from center to border: a slightly flattened reservoir of highly chaotic orbits seems to be mandatory for those systems.  相似文献   
997.
In this paper, an arbitrary Lagrangian–Eulerian (ALE) method is generalized to solve consolidation problems involving large deformation. Special issues such as pore‐water pressure convection, permeability and void ratio updates due to rotation and convection, mesh refinement and equilibrium checks are discussed. A simple and effective mesh refinement scheme is presented for the ALE method. The ALE method as well as an updated‐Lagrangian method is then used to solve some classical consolidation problems involving large deformations with different constitutive laws. The results clearly show the advantage and efficiency of the ALE method for these examples. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
998.
This paper develops a tensor and its inverse, for the analytical propagation of the position and velocity of a satellite, with respect to another, in an eccentric orbit. The tensor is useful for relative motion analysis where the separation distance between the two satellites is large. The use of nonsingular elements in the formulation ensures uniform validity even when the reference orbit is circular. Furthermore, when coupled with state transition matrices from existing works that account for perturbations due to Earth oblateness effects, its use can very accurately propagate relative states when oblateness effects and second-order nonlinearities from the differential gravitational field are of the same order of magnitude. The effectiveness of the tensor is illustrated with various examples.  相似文献   
999.
A simple approximate model of the asteroid dynamics near the 3:1 mean–motion resonance with Jupiter can be described by a Hamiltonian system with two degrees of freedom. The phase variables of this system evolve at different rates and can be subdivided into the ‘fast’ and ‘slow’ ones. Using the averaging technique, wisdom obtained the evolutionary equations which allow to study the long-term behavior of the slow variables. The dynamic system described by the averaged equations will be called the ‘Wisdom system’ below. The investigation of the, wisdom system properties allows us to present detailed classification of the slow variables’ evolution paths. The validity of the averaged equations is closely connected with the conservation of the approximate integral (adiabatic invariant) possessed by the original system. Qualitative changes in the behavior of the fast variables cause the violations of the adiabatic invariance. As a result the adiabatic chaos phenomenon takes place. Our analysis reveals numerous stable periodic trajectories in the region of the adiabatic chaos.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号