首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2965篇
  免费   623篇
  国内免费   359篇
测绘学   183篇
大气科学   157篇
地球物理   1006篇
地质学   1431篇
海洋学   305篇
天文学   6篇
综合类   180篇
自然地理   679篇
  2024年   15篇
  2023年   45篇
  2022年   88篇
  2021年   137篇
  2020年   149篇
  2019年   145篇
  2018年   124篇
  2017年   146篇
  2016年   151篇
  2015年   135篇
  2014年   181篇
  2013年   247篇
  2012年   167篇
  2011年   155篇
  2010年   137篇
  2009年   158篇
  2008年   179篇
  2007年   203篇
  2006年   189篇
  2005年   143篇
  2004年   164篇
  2003年   141篇
  2002年   119篇
  2001年   98篇
  2000年   80篇
  1999年   72篇
  1998年   77篇
  1997年   69篇
  1996年   41篇
  1995年   47篇
  1994年   39篇
  1993年   17篇
  1992年   17篇
  1991年   12篇
  1990年   13篇
  1989年   11篇
  1988年   12篇
  1987年   6篇
  1986年   7篇
  1985年   4篇
  1984年   4篇
  1982年   2篇
  1981年   1篇
排序方式: 共有3947条查询结果,搜索用时 15 毫秒
991.
Macro-scale river-routing schemes first emerged to channel runoff generated as a by-product from land surface models to oceans. In the past decade, as discharge of major rivers was identified as a suitable parameter to test the performance of the macro-scale land surface models, river-routing received significant attention, with development of multiple schemes. As resolution improves, the possibility of river-routing schemes connecting the global models with watershed issues has emerged as an option. Yet, even as results from these schemes become easily available, a comprehensive overview of their scope and limitation when considering regional or watershed-centric applications is lacking. To address this gap, 18 published river-routing schemes are compared by examining their structure, rationale and limitations. Due to the diverse nature of scheme implementations, a direct comparison of performance is not yet possible. However, features and studies geared towards watershed-scale applications are highlighted. Issues of global to local integration are discussed.  相似文献   
992.
Restoration of river–wetland systems to recover lost ecosystem services and restore consistent flood regimes is commonly directed at modifying in-channel storage and hyporheic exchange. Here, we monitored the hydrologic response to channel realignment in a montane river–wetland system by comparing pre- and post-restoration measurements. In 2015, an earthen berm and 190 m segment of the Upper Colorado River were constructed to consolidate flow from multiple channels into the historic thalweg. We injected a sodium chloride tracer during baseflow and used mass-balance calculations and electrical resistivity imaging to assess changes in near-channel hyporheic exchange. Results indicate a decrease in hyporheic exchange within the wetland due to lost complexity along the consolidated flow path. Subsurface complexity appears to control hyporheic exchange more than surface complexity. Flow consolidation increased the area-adjusted wetland water yield by 231 mm, indicating a loss of wetland water storage capacity. One year of post-restoration monitoring suggests that the form-based channel restoration directed at consolidating flow into a single thread adversely affected the hyporheic exchange functioning in the pre-restoration system. Results from this case study are applicable to restoration planners as they consider the effects of form-based projects on water storage capacity in similar systems. © 2018 John Wiley & Sons, Ltd.  相似文献   
993.
滇池入湖河流磷负荷时空变化及形态组成贡献   总被引:5,自引:2,他引:3  
研究了2013年滇池主要入湖河流总磷(TP)及各形态磷浓度的时空变化与入湖负荷特征,并探讨了不同形态磷的入湖负荷贡献.结果表明:(1)滇池河流入湖TP浓度在0.11~1.93 mg/L之间,以溶解性无机磷(DIP)和颗粒态磷(PP)为主,溶解性有机磷(DOP)浓度较低;(2)滇池河流入湖磷负荷总量为280.51 t/a,绝大多数河流主要以DIP形态入湖,平均贡献率为43.48%;PP形态入湖负荷次之,平均贡献率为31.64%;DOP入湖负荷较低,平均贡献率为24.88%;(3)DIP入湖负荷贡献率较高值出现在3、4和11月的枯水期,平均入湖负荷贡献率达到55.30%;PP入湖负荷贡献率较高值出现在1和7月,平均入湖负荷贡献率为56.14%;DOP入湖负荷贡献率月变化差异较小,最高值出现在12月,贡献率为21.85%;(4)研究滇池入湖河流污染负荷不仅要考虑溶解态无机磷的贡献,而且需要重视PP和DOP负荷,控制滇池入湖河流污染负荷需要考虑不同河流不同形态磷负荷组成及月变化差异特征,有针对性地采取相应措施.  相似文献   
994.
入库河流与水库存在空间上的连续性,河流污染物输入是水库水质恶化的主要原因,对大伙房水库及其入库支流61个采样点的水质状况进行调查,并运用聚类分析和主成分分析对大伙房水库及入库支流的水质空间特性和主要污染物进行分析.聚类分析显示,按照水质相似性将大伙房水库及入库支流水质可分为上游区、下游区和库区3个典型空间区域.分别对3个区域进行主成分分析,结果显示:入库支流上游区和下游区水质主要影响因素为氨氮、总氮和化学需氧量,库区影响水质的主要因素为温度、p H值、浊度、溶解氧、电导率、氨氮和总氮.对上游、下游和库区水质均有显著影响的因子为氨氮和总氮,上游区、下游区和库区氨氮浓度均值分别为0.06、0.10和0.19 mg/L,总氮浓度均值分别为0.13、0.16和0.26 mg/L.入库河流下游区对水库水质影响较大,受社河和浑河污染物输入的影响,大伙房水库水质在空间上呈现社河入库区水质优于浑河入库区水质.并且库区氨氮和总氮浓度均与距岸边距离呈负相关,溶解氧和p H值均与距入库口距离呈负相关,表明入库河流污染物输入和环库区面源污染均对大伙房水库水质产生一定影响.  相似文献   
995.
提出一种基于洪水预报误差系统反演的多河段联合校正方法.采用马斯京根法矩阵方程描述多河段多区间入流的河道汇流过程,基于动力系统反演理论建立洪水预报误差的递推方程,最后利用修正后的多河段状态变量经演算得到预报断面的洪水过程,进而达到多河段联合校正目的.对大渡河上游的应用示例结果表明:多河段联合校正方法考虑了河系中断面间的水力联系及预报误差在时程上的传递规律,可充分利用上游多断面实测和校正信息进行下游预报断面的误差修正,因此具有更高的校正精度和稳定性.  相似文献   
996.
Regulated rivers generally incise below dams that cut off sediment supply, but how that happens and what the consequences are at different spatial scales is poorly understood. Modern topographic mapping at meter‐scale resolution now enables investigation of the details of spatial processes. In this study, spatial segregation was applied to a meter‐scale raster map of topographic change from 1999 to 2008 on the gravel‐cobble, regulated lower Yuba River in California to answer specific scientific questions about how a decadal hydrograph that included a flood peak of 22 times bankfull discharge affected the river at segment, reach, and morphological unit scales. The results show that the river preferentially eroded sediment from floodplains compared to the channel, and this not only promoted valley‐wide sediment evacuation, but also facilitated the renewal and differentiation of morphological units, especially in the channel. At the reach scale, area of fill and mean net rate of elevational change were directly correlated with better connectivity between the channel and floodplain, while the mean rate of scour in scour areas was influenced by the ratio of slope to bankfull Froude number, a ratio indicative of lateral migration versus vertical downcutting. Hierarchical segregation of topographic change rasters proved useful for understanding multi‐scalar geomorphic dynamics. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
997.
This paper explores changes in suspended sediment transport and fine sediment storage at the reach and patch scale associated with the reintroduction of partial large wood (LW) jams in an artificially over‐widened lowland river. The field site incorporates two adjacent reaches: a downstream section where LW jams were reintroduced in 2010 and a reach immediately upstream where no LW was introduced. LW pieces were organized into ‘partial’ jams incorporating several ‘key pieces’ which were later colonized by substantial stands of aquatic and wetland plants. Reach‐scale suspended sediment transport was investigated using arrays of time‐integrated suspended sediment samplers. Patch‐scale suspended sediment transport was explored experimentally using turbidity sensors to track the magnitude and velocity of artificially generated sediment plumes. Fine sediment storage was quantified at both reach and patch scales by repeat surveys of fine sediment depth. The results show that partial LW jams influence fine sediment dynamics at both the patch and reach scale. At the patch‐scale, introduction of LW led to a reduction in the concentration and increase in the time lag of released sediment plumes within the LW, indicating increased diffusion of plumes. This contrasted with higher concentrations and lower time lags in areas adjacent to the LW; indicating more effective advection processes. This led to increased fine sediment storage within the LW compared with areas adjacent to the LW. At the reach‐scale there was a greater increase in fine sediment storage through time within the restored reach relative to the unrestored reach, although the changes in sediment transport responsible for this were not evident from time‐integrated suspended sediment data. The results of the study have been used to develop a conceptual model which may inform restoration design. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
998.
River system measurement and mapping using UAVs is both lean and agile, with the added advantage of increased safety for the surveying crew. A common parameter of fluvial geomorphological studies is the flow velocity, which is a major driver of sediment behavior. Advances in fluid mechanics now include metrics describing the presence and interaction of coherent structures within a flow field and along its boundaries. These metrics have proven to be useful in studying the complex turbulent flows but require time‐resolved flow field data, which is normally unavailable in geomorphological studies. Contactless UAV‐based velocity measurement provides a new source of velocity field data for measurements of extreme hydrological events at a safe distance, and could allow for measurements of inaccessible areas. Recent works have successfully applied large‐scale particle image velocimetry (LSPIV) using UAVs in rivers, focusing predominantly on surficial flow estimation by tracking intensity differences between georeferenced images. The objective of this work is to introduce a methodology for UAV based real‐time particle tracking in rivers (RAPTOR) in a case study along a short test reach of the Brigach River in the German Black Forest. This methodology allows for large‐scale particle tracking velocimetry (LSPTV) using a combination of floating, infrared light‐emitting particles and a programmable embedded color vision sensor in order to simultaneously detect and track the positions of objects. The main advantage of this approach is its ability to rapidly collect and process the position data, which can be done in real time. The disadvantages are that the method requires the use of specialized light‐emitting particles, which in some cases cannot be retrieved from the investigation area, and that the method returns velocity data in unscaled units of px/s. This work introduces the RAPTOR system with its hardware, data processing workflow, and provides an example of unscaled velocity field estimation using the proposed method. First experiences with the method show that the tracking rate of 50 Hz allows for position estimation with sub‐pixel accuracy, even considering UAV self‐motion. A comparison of the unscaled tracks after Savitzky–Golay filtering shows that although the time‐averaged velocities remain virtually the same, the filter reduces the standard deviation by more than 40% and the maxima by 20%. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
999.
The artificial gravel augmentation of river channels is increasingly being used to mitigate the adverse effects of river regulation and sediment starvation. A systematic framework for designing and assessing such gravel augmentations is still lacking, notably on large rivers. Monitoring is required to quantify the movement of augmented gravel, measure bedform changes, assess potential habitat enhancement, and reduce the uncertainty in sediment management. Here we present the results of an experiment conducted in the Rhine River (French and German border). In 2010, 23 000 m3 of sediments (approximately the mean annual bedload transport capacity) were supplied in a by‐passed reach downstream of the Kembs dam to test the feasibility of enhancing sediment transport and bedform changes. A 620‐m‐long and 12‐m‐wide gravel deposit was created 8 km downstream from the dam. Monitoring included topo‐bathymetric surveys, radio‐frequency particle tracking using passive integrated transponder (PIT) tags, bed grain size measurement, and airborne imagery. Six surveys performed since 2009 have been described (before and after gravel augmentation, and after Q2 and Q15 floods). The key findings are that (i) the augmented gravel was partially dispersed by the first flood event of December 2010 (Q1); (ii) PIT tags were found up to 3200 m downstream of the gravel augmentation site after four years, but the effects of gravel augmentation could not be clearly distinguished from the effects of floods and internal remobilization on more than 3500 m downstream; (iii) linear and log‐linear relationships linking bedload transport, particle mobility, and grain size were established; and (iv) combined bathymetry and PIT tag surveys were useful for evaluating potential environmental risks and the first morpho‐ecological responses. This confirmed the complementary nature of such techniques in the monitoring of gravel augmentation in large rivers. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
1000.
Passive acoustic monitoring of the self‐generated noise of particle impacts has been shown to be correlated to bedload flux and bedload size. However, few studies have concentrated on the role of acoustic wave propagation in a river. For the first time, the river environment is modeled as a Pekeris waveguide, where a wave number integration technique is used to predict the transformation of sounds through their propagation paths. Focusing on the distance of a hydrophone from the channel bed and cutting off the low frequencies produced by impacts between gravel particles, we demonstrate that acoustic propagation modifies the spectral content of bedload‐generated sound. Acoustic signals analyzed with the proposed model are interpreted by comparison to Helley–Smith bedload data obtained during flood conditions on the large gravel‐bedded Arc‐en‐Maurienne River, France. This study shows that careful attention to acoustic propagation effects is required when estimating bedload grain size distribution with hydrophones in rivers, especially for rivers with slopes higher than 1%. Bedload monitoring with a hydrophone is particularly appropriate for large gravel‐bed rivers – especially so during large floods, when in situ sampling is difficult or impractical and the impact of acoustic propagation is weaker relative to the self‐generated noise of bedload impacts. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号