首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1678篇
  免费   449篇
  国内免费   401篇
测绘学   31篇
大气科学   35篇
地球物理   414篇
地质学   1128篇
海洋学   723篇
天文学   5篇
综合类   98篇
自然地理   94篇
  2024年   11篇
  2023年   29篇
  2022年   63篇
  2021年   76篇
  2020年   88篇
  2019年   107篇
  2018年   80篇
  2017年   95篇
  2016年   93篇
  2015年   83篇
  2014年   112篇
  2013年   132篇
  2012年   101篇
  2011年   125篇
  2010年   108篇
  2009年   112篇
  2008年   121篇
  2007年   144篇
  2006年   108篇
  2005年   95篇
  2004年   90篇
  2003年   76篇
  2002年   50篇
  2001年   39篇
  2000年   49篇
  1999年   66篇
  1998年   50篇
  1997年   42篇
  1996年   43篇
  1995年   20篇
  1994年   22篇
  1993年   18篇
  1992年   15篇
  1991年   15篇
  1990年   4篇
  1989年   8篇
  1988年   6篇
  1987年   4篇
  1986年   6篇
  1985年   7篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
排序方式: 共有2528条查询结果,搜索用时 343 毫秒
71.
A common assumption in the geological analysis of modern reefs is that coral community zonation seen on the surface should also be found in cores from the reef interior. Such assumptions not only underestimate the impact of tropical storms on reef facies development, but have been difficult to test because of restrictions imposed by narrow‐diameter cores and poor recovery. That assumption is tested here using large‐diameter cores recovered from a range of common zones across three Campeche Bank reefs. It is found that cores from the reef‐front, crest, flat and rubble‐cay zones are similar in texture and coral composition, making it impossible to recognize coral assemblages that reflect the surface zonation. Taphonomic signatures imparted by variations in encrustation, bioerosion and cementation, however, produce distinct facies and delineate a clear depth zonation. Cores from the reef‐front zone (2–10 m depth) are characterized by sections of Acropora palmata cobble gravel interspersed with sections of in‐place (but truncated) A. palmata stumps. Upper surfaces of truncated colonies are intensely bioeroded by traces of Entobia isp. and Gastrochaenolites isp. and encrusted by mm‐thick crustose corallines before colony regeneration and, therefore, indicate punctuated growth resulting from a hurricane‐induced cycle of destruction and regeneration. Cores from the reef crest/flat (0–2 m depth) are also characterized by sections of hurricane‐derived A. palmata cobble‐gravels as well as in‐place A. palmata colonies. In contrast to the reef front, however, these cobble gravels are encrusted by cm‐thick crusts of intergrown coralline algae, low‐relief Homotrema and vermetids, bored by traces of Entobia isp. and Trypanites isp. and coated by a dense, peloidal, micrite cement. Cores from the inter‐ to supratidal rubble‐cay zone (+0–5 m) are only composed of A. palmata cobble gravels and, although clasts show evidence of subtidal encrustation and bioerosion, these always represent processes that occurred before deposition on the cay. Instead, these gravels are distinguished on the basis of their limited bioerosion and marine cements, which exhibit fabrics formed in the intertidal zone. These results confirm that hurricanes have a major influence on facies development in Campeche Bank reefs. Instead of reflecting the surface coral zonation, each facies records a distinctive, depth‐related set of taphonomic processes, which reflect colonization, alteration and stabilization following the production of new substrates by hurricanes.  相似文献   
72.
The aim of this study is to shed light on the hydrogeochemical characteristics of karst underground waters at shallow depth in Guiyang City, Guizhou Province with an emphasis on the geochemistry of major elements. Guiyang City bears abundant underground waters and it is also an important representative of the karst areas throughout the world. Ca^2 and Mg^2 are the dominant cations, accounting for 81% -99.7% of the total, and HCO3^- and SO4^2- are the dominant anions. Weathering of limestones and dolostones is the most important factor controlling the hydrogeochemistry of underground waters, and weathering of sulfate and evaporite rocks is less important. Moreover, the precipitation and human activities also have a definite influence on the hydrogeoehemistry of underground waters in the region studied.  相似文献   
73.
Tectono-stratigraphic analysis of the East Tanka fault zone (ETFZ), Suez Rift, indicates that the evolution of normal fault segments was an important control on syn-rift depositional patterns and sequence stratigraphy. Sedimentological and stratigraphic analysis of the Nukhul Formation indicates that it was deposited in a narrow (ca 1–2 km), elongate (ca 5 km), fault-bounded, tidally influenced embayment during the low subsidence rift-initiation phase. The Nukhul Formation is composed of transgressive (TST) and highstand (HST) systems tract couplets interpreted as reflecting fault-driven subsidence and the continuous creation of accommodation in the hangingwall to the ETFZ. The overlying Lower Rudeis Formation was deposited during the high subsidence rift-climax phase, and is composed of forced regressive systems tract (FRST) shallow marine sandbodies, and TST to HST offshore mudstones. Activity on the ETFZ led to marked spatial variability in stratal stacking patterns, systems tracts and key stratal surfaces, as footwall uplift, coupled with regressive marine erosion during deposition of FRST sandbodies, led to the removal of intervening TST–HST mudstone-dominated units, and the amalgamation of FRST sandbodies and the stratal surfaces bounding these units in the footwall. This study indicates that the evolution of normal fault segments over relatively short (i.e. <1 km) length-scales has the potential to enhance or suppress a eustatic sea-level signal, leading to marked spatial variations in stratal stacking patterns, systems tracts and key stratal surfaces. Crucially, these variations in sequence stratigraphic evolution may occur within time-equivalent stratal units, thus caution must be exercised when attempting to correlate syn-rift depositional units based solely on stratal stacking patterns. Furthermore, local, tectonically controlled variations in relative sea level can give rise to syn-rift stacking patterns which are counterintuitive in the context of the structural setting and perceived regional subsidence rates.  相似文献   
74.
Resuspension estimates given by two different trap methods in a shallow lake were compared. The sensitivity of the methods to errors in estimates of gross sedimentation and organic fraction of trapped material was explored. The methods were label method, in which resuspension is estimated by determining the organic fraction of surface sediment, suspended seston and trapped material, and SPIM/SPM method, where the relationship between settling particulate inorganic matter (SPIM) and total settling particulate matter (SPM) is used. During the whole 111 day study period, according to the label method, at a sheltered station 1949 g m−2 dry weight of sediment was resuspended, whereas SPIM/SPM gave an estimate of 1815 g m−2. The difference in the estimates was probably due to mineralization loss of organic material in the traps during the two week exposure periods. Sensitivity analysis showed that of the two methods, the label method was more sensitive to variations in the organic content of trapped material. At a wind-exposed station, the total amounts of resuspended matter given by the label method and by the SPIM/SPM method were 4966 g m−2 and 4971 g m−2, respectively. Due to wind effects, escape of trapped material took place, which caused underestimation of gross sedimentation and compensated the effects of mineralization loss to diminish the difference between the methods. Of the two methods, the SPIM/SPM method seems thus more suitable for lakes, where bacterial activity is high. If cyanobacterial blooms take place, the label method is probably more reliable, providing that the exposure time of sediment traps is kept adequately short.  相似文献   
75.
The swing of the main channel of the Qiantang River is controlled by the high-water and low-water changes in the river, as well as the impact of large-scale reclamation of tidal flats. Its evolution in modern times is the result of the combined functions of natural and man-made factors. This paper analyzes the cause of the formation of the South Channel and Xisan Tidal Furrow and proposes the regulation principle of “To regulate the river and reclaim tidal flats by taking the advantage of local topography”. It is suggested to cut off the South Channel and Xisan Tidal Furrow completely to restrict the swing of the main channel and to increase the reclamation area of the tidal flat at the same time.  相似文献   
76.
Topography and landscape characteristics affect the storage and release of water and, thus, groundwater dynamics and chemistry. Quantification of catchment scale variability in groundwater chemistry and groundwater dynamics may therefore help to delineate different groundwater types and improve our understanding of which parts of the catchment contribute to streamflow. We sampled shallow groundwater from 34 to 47 wells and streamflow at seven locations in a 20‐ha steep mountainous catchment in the Swiss pre‐Alps, during nine baseflow snapshot campaigns. The spatial variability in electrical conductivity, stable water isotopic composition, and major and trace ion concentrations was large and for almost all parameters larger than the temporal variability. Concentrations of copper, zinc, and lead were highest at sites that were relatively dry, whereas concentrations of manganese and iron were highest at sites that had persistent shallow groundwater levels. The major cation and anion concentrations were only weakly correlated to individual topographic or hydrodynamic characteristics. However, we could distinguish four shallow groundwater types based on differences from the catchment average concentrations: riparian zone‐like groundwater, hillslopes and areas with small upslope contributing areas, deeper groundwater, and sites characterized by high magnesium and sulfate concentrations that likely reflect different bedrock material. Baseflow was not an equal mixture of the different groundwater types. For the majority of the campaigns, baseflow chemistry most strongly resembled riparian‐like groundwater for all but one subcatchment. However, the similarity to the hillslope‐type groundwater was larger shortly after snowmelt, reflecting differences in hydrologic connectivity. We expect that similar groundwater types can be found in other catchments with steep hillslopes and wet areas with shallow groundwater levels and recommend sampling of groundwater from all landscape elements to understand groundwater chemistry and groundwater contributions to streamflow.  相似文献   
77.
A sequence of shallow reef cores from Heron Reef, Great Barrier Reef, provides new insights into Holocene reef growth models. Isochron analysis of a leeward core transect suggests that the north‐western end of Heron Reef reached current sea‐level by ca 6·5 kyr bp and then prograded leeward at a rate of ca 19·6 m/kyr between 5·1 kyr and 4·1 kyr bp (pre‐1950) to the present reef margin. A single short core on the opposing margin of the reef is consistent with greater and more recent progradation there. Further to the east, one windward core reached modern sea‐level by ca 6·3 kyr bp , suggesting near ‘keep‐up’ behaviour at that location, but the opposing leeward margin behind the lagoon reached sea‐level much more recently. Hence, Heron Reef exhibited significantly different reef growth behaviour on different parts of the same margin. Mean reef accretion rates calculated from within 20 m of one another in the leeward core transect varied between ca 2·9 m and 4·7 m/kyr depending on relative position in the prograding wedge. These cores serve as a warning regarding the use of isolated cores to inform reef growth rates because apparent aggradation at any given location on a reef varies depending on its location relative to a prograding margin. Only transects of closely spaced cores can document reef behaviour adequately so as to inform reef growth models and sea‐level curves. The cores also emphasize potential problems in U‐series dates for corals within a shallow (ca 1·5 m) zone beneath the reef flat. Apparent age inversions restricted to that active diagenetic zone may reflect remobilization and concentration of Th in irregularly distributed microbialites or biofilms that were missed during sample vetting. Importantly, the Th‐containing contaminant causes ages to appear too old, rather than too young, as would be expected from younger cement.  相似文献   
78.
Existing facies models for Devonian reef systems can be divided into high‐energy and low‐energy types. A number of assumptions have been made in the development of these models and, in some cases, criteria that distinguish important aspects of the models are poorly defined. The Upper Devonian Alexandra Reef System contains a variety of reef fabrics from different depositional environments and is ideal for studying the range of environments in which stromatoporoids thrived and the facies from these different environments. A wide variety of stromatoporoid growth forms including laminar, tabular, anastamosing laminar and tabular, domal, bulbous, dendroid, expanding conical, concave‐up whorled‐laminar, concave‐up massive tabular and platy‐multicolumnar are present in the Alexandra Reef System. The whorled‐laminar and massive tabular concave‐up growth forms are virtually undocumented from other Devonian reefs but were common in the reef front of the Alexandra, where they thrived in a low‐energy environment around and below fair‐weather wave base. In contrast, high‐energy parts of the reef margin were dominated by bioclastic rubble deposits with narrow ribbon‐like discontinuous bodies of laminar stromatoporoid framestone. In the lagoon, laminar stromatoporoids formed steep‐sided sediment‐dominated bioherms in response to sea‐level rise and flooding. Relying mostly on the different reef facies in the Alexandra system, a new classification scheme for Devonian reef fabrics has been developed. Devonian reef fabrics can be classified as being: (i) sediment‐laden metazoan dominated; (ii) metazoan–microbial dominated (boundstone); (iii) metazoan dominated (framestone); or (iv) metazoan–marine cement dominated. Distinction of these fabrics carries important sedimentary and palaeoecological implications for reconstructing the depositional environment. With examples from the Alexandra Formation, it is demonstrated that reef facies accumulated in a range of depositional environments and that the simple observation of massive stromatoporoids with or without microbial deposits does not automatically imply a high‐energy reef margin, as otherwise portrayed in a number of the existing facies models for these systems.  相似文献   
79.
Shoreface sandstone deposits within the Early Carnian part of the Snadd Formation of the Norwegian Barents Sea can be traced for hundreds of kilometres in the depositional strike direction and for tens of kilometres in the depositional‐dip direction. This study uses three‐dimensional seismic attribute mapping and two‐dimensional regional seismic profiles to visualize the seismic facies of these shoreface deposits and to map their internal stratigraphic architecture at a regional scale. The shoreface deposits are generally elongate but show variable width from north‐east to south‐west, which corresponds to a sediment source in the northern part of the basin and a southward decrease in longshore sediment transport. The Snadd Formation presents an example of how large‐scale progradational shoreface deposits develop. The linear nature of its shoreface deposits contrasts with more irregular, cuspate wave‐dominated deltaic shorelines that contain river outlets, and instead implies longshore drift as the main sediment source. In map view, discrete sets of linear features bounded by truncation surfaces scale directly to beach ridge sets in modern counterparts. The shoreface deposits studied here are characteristic in terms of scale and basin‐wide continuity, and offer insight into the contrast between shallow marine deposition under stable Triassic Greenhouse and fluctuating Holocene Icehouse climates. Findings presented herein are also important for hydrocarbon exploration in the Barents Sea, because they describe a hitherto poorly understood reservoir play in the Triassic interval, wherein the most prominent reservoir plays have so far been considered to be found in channelized deposits in net‐progradational delta‐plain strata that form the topsets to shelf‐edge clinoforms. The documented presence of widespread wave‐dominated shoreface deposits also has implications for how the relative importance of different sedimentary processes is considered within the basin during this period.  相似文献   
80.
为解决槽、井探等传统地表揭露手段自身局限性问题及减少对环境的破坏,提出以钻代槽勘查方法研究的技术路线,总结归纳出浅钻技术方法与钻孔布孔方案,同时初步探讨了基于钻孔数据的三维地质建模方法。最后将以钻代槽方法成果在西藏等地进行了推广应用,验证了可行性和有效性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号