首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   733篇
  免费   111篇
  国内免费   280篇
测绘学   15篇
大气科学   8篇
地球物理   132篇
地质学   742篇
海洋学   133篇
天文学   27篇
综合类   22篇
自然地理   45篇
  2024年   3篇
  2023年   18篇
  2022年   30篇
  2021年   39篇
  2020年   35篇
  2019年   39篇
  2018年   25篇
  2017年   26篇
  2016年   31篇
  2015年   26篇
  2014年   37篇
  2013年   61篇
  2012年   43篇
  2011年   40篇
  2010年   30篇
  2009年   45篇
  2008年   46篇
  2007年   51篇
  2006年   52篇
  2005年   33篇
  2004年   43篇
  2003年   39篇
  2002年   39篇
  2001年   36篇
  2000年   36篇
  1999年   31篇
  1998年   34篇
  1997年   35篇
  1996年   23篇
  1995年   20篇
  1994年   22篇
  1993年   12篇
  1992年   14篇
  1991年   7篇
  1990年   8篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
  1983年   1篇
  1978年   1篇
排序方式: 共有1124条查询结果,搜索用时 0 毫秒
371.
岩浆作用与青藏高原演化   总被引:21,自引:0,他引:21  
        青藏高原是我国岩浆岩最发育的地区之一,出露着从元古宇到新生代各个地质时期多种类型的火山岩与侵入岩,面 积达30万km2左右,占全区面积的10%以上。这些岩浆岩在青藏大陆动力学研究中有着重要的作用,既是探测深部的“探 针”和“窗口”,又是构造演化的记录,并形成重要的构造-岩浆-成矿带。本文拟通过岩浆作用和岩浆岩来研究青藏高原 演化的一些科学问题。(1)印度-亚洲大陆碰撞时限:印度-亚洲大陆碰撞时限是青藏高原形成演化中一个非常重要的基础 问题,也是国际上争论的一个热点,到目前为止,分歧仍然很大,从主张早于70 Ma 到34 Ma都有。本文根据来自我国西藏 南部延伸1500 km以上的主碰撞带的综合证据提出,印度-亚洲大陆碰撞开始的时间为70/65 Ma,完成的时间在40 Ma左右, 这个时期称为同碰撞期,40 Ma之后转入后碰撞期。(2)同碰撞阶段的壳-幔交换-底侵与岩浆混合作用: 南冈底斯带同碰撞 花岗岩中有着丰富的岩浆底侵作用与岩浆混合作用证据。这两种作用,是通过岩浆作用实现壳-幔间物质和能量的交换, 是两种不同而又密切相关的大陆地壳生长方式。(3) 青藏巨厚地壳的成因: 双倍于正常厚度的巨厚地壳,是青藏高原最显著 的特点之一,世界瞩目。通过对同碰撞与后碰撞火成岩的研究提出“两类地壳、两种机制”的认识,即新生地壳与再循环 地壳;构造挤压增厚机制与地幔物质注入增厚机制。(4)青藏岩石圈的组成、结构与演化:高原岩石圈地幔存在三种地球 化学端元,存在三种岩石圈结构类型,已在青藏高原多处发现地幔与下地壳岩石的地表露头及火成岩所携带的深源岩石包 体。(5)青藏高原深部物质的可能流动:青藏高原新生代碰撞-后碰撞火成活动有规律的时空迁移,以及深部地球物理探 测,都暗示碰撞引起壳幔深部物质的横向流动  相似文献   
372.
The Higo terrane in west-central Kyushu Island, southwest Japan consists from north to south of the Manotani, Higo and Ryuhozan metamorphic complexes, which are intruded by the Higo plutonic complex (Miyanohara tonalite and Shiraishino granodiorite).The Higo and Manotani metamorphic complexes indicate an imbricate crustal section in which a sequence of metamorphic rocks with increasing metamorphic grade from high (northern part) to low (southern part) structural levels is exposed. The metamorphic rocks in these complexes can be divided into five metamorphic zones (zone A to zone E) from top to base (i.e., from north to south) on the basis of mineral parageneses of pelitic rocks. Greenschist-facies mineral assemblages in zone A (the Manotani metamorphic complex) give way to amphibolite-facies assemblages in zones B, C and D, which in turn are replaced by granulite-facies assemblages in zone E of the Higo metamorphic complex. The highest-grade part of the complex (zone E) indicates peak P–T conditions of ca. 720 MPa and ca. 870 °C. In addition highly aluminous Spr-bearing granulites and related high-temperature metamorphic rocks occur as blocks in peridotite intrusions and show UHT-metamorphic conditions of ca. 900 MPa and ca. 950 °C. The prograde and retrograde P–T evolution paths of the Higo and Manotani metamorphic complexes are estimated using reaction textures, mineral inclusion analyses and mineral chemistries, especially in zones A and D, which show a clockwise P–T path from Lws-including Pmp–Act field to Act–Chl–Epi field in zone A and St–Ky field to And field through Sil field in zone D.The Higo metamorphic complex has been traditionally considered to be the western-end of the Ryoke metamorphic belt in the Japanese Islands or part of the Kurosegawa–Paleo Ryoke terrane in south-west Japan. However, recent detailed studies including Permo–Triassic age (ca. 250 Ma) determinations from this complex indicate a close relationship with the high-grade metamorphic terranes in eastern-most Asia (e.g., north Dabie terrane) with similar metamorphic and igneous characteristics, protolith assembly, and metamorphic and igneous ages. The north Dabie high-grade terrane as a collisional metamorphic zone between the North China and the South China cratons could be extended to the N-NE along the transcurrent fault (Tan-Lu Fault) as the Sulu belt in Shandong Peninsula and the Imjingang belt in Korean Peninsula. The Higo and Manotani metamorphic complexes as well as the Hida–Oki terrane in Japan would also have belonged to this type of collisional terrane and then experienced a top-to-the-south displacement with forming a regional nappe structure before the intrusion of younger Shiraishino granodiorite (ca. 120 Ma).  相似文献   
373.
郭敬辉  翟明国  李永刚  李江海 《地质科学》1999,34(3):311-325,T002
恒山西段广泛发育石榴石角闪岩和麻粒岩包体,石榴石斑晶的生长环带都完好地保留,甚至晚期的麻粒岩相变质条件也未使其破坏,显示了快速的构造过程和有限的热松弛。石榴石核心保存了早期高压角闪岩相的矿物组合和矿物化学特征,变质作用条件为600—650℃和大约11 GPa。随后,石榴石麻粒岩的变质温度和压力继续上升,达到高压麻粒岩相,大约为810℃和125 GPa。两类岩石变质作用的晚期都经历了特殊的减压升温过程,显示典型的顺时针PT 轨迹。因此可以推断,恒山西段在太古宙末或早元古代很可能经历了某种形式的大陆俯冲或碰撞过程,并且随后发育逆冲和一系列壳内变形剪切等。  相似文献   
374.
锡矿山锑矿田幔-壳构造成矿模型及找矿预测   总被引:14,自引:0,他引:14  
介绍湖南锑的区域地球化学背景特征,分析锑异常分布规律及与构造、岩浆岩的关系,探讨地壳演化与锑矿成矿作用,建立锡矿山锑矿田幔-壳构造模型,并进行找矿预测.  相似文献   
375.
本文首先简要地介绍了地震层析方法的原理,着重探讨了三维速度异常地质解释的几个基本问题,包括划分构造层的物理基础、确定分辨尺度的依据以及估计地质时限依据的岩石热力学过程。然后介绍了应用地震层析及地质解释方法研究滇西造山带的地壳、下岩石圈及软流圈构造所得到的主要结果,并与人工地震测深及大地电磁测深结果进行了比较。这一工作说明地震层析可以作为岩石圈与软流圈构造研究的一种有效手段,在造山带深部构造的研究中将发挥独特的作用。  相似文献   
376.
全球超大型斑岩铜矿浅析   总被引:5,自引:0,他引:5  
燕山-喜马拉雅期构造运动,引起印度板块与欧亚板块剧烈碰撞、太平洋板块向东俯冲与美洲大陆向西漂移,产生了"加厚旋涌"效应,即下地壳的加厚并深插上地幔软流圈,改变了软流圈运动方式而上涌,伴随强烈的岩浆活动和成矿物质上涌,完成了大规模成矿作用,在特提斯-喜马拉雅地区和太平洋东部边缘产出世界级超大型斑岩铜矿系列.初步提出太平洋东部边缘成矿作用明显超过特提斯-喜马拉雅地区原因.  相似文献   
377.
摘要:位于兴蒙造山带东端的黑龙江塔溪地区花岗岩主要岩石类型为二长花岗岩和正长花岗岩,锆石U Pb( LA ICP MS)同位素测年结果为295~285 Ma,表明形成于晚古生代。岩石地球化学以弱过铝质、中—高钾为特征,总体表现为:高钾钙碱性系列,轻稀土元素富集,重稀土元素相对亏损,弱—中等δEu负异常,大离子亲石元素(LILE)Rb、La富集,Ba、Sr亏损,高场强元素(HFSE)Ce、Zr、Hf、Th富集,Nb、Ta亏损。推测花岗质岩浆曾发生壳幔混染作用,有更多壳源物质参与,显示后造山I型花岗岩特征。认为花岗岩形成于挤压向伸展转换的后造山环境,为兴安地块与松嫩地块碰撞拼合的后造山阶段产物。  相似文献   
378.
新疆造山带大地构造相研究与分类   总被引:2,自引:1,他引:2  
复杂的大陆造山带并非是杂乱无章、毫无规律可循的 ,它可依照“生物结构”,解析为按一定基本构造样式或构件组合而成的四维蓝图。通过对各构造相单元 (基本构件 )的研究可清楚地再造造山演化过程。依据比较解剖学的原理 ,按古沉积盆地的地壳结构类型与产出的大地构造背景为基础 ,将新疆境内大地构造相分为离散背景、汇聚背景、碰撞背景及走滑背景下形成 2 9种构造相  相似文献   
379.
Two distinct ultramafic bodies occur in Baekdong and Bibong in the Hongseong area within Gyeonggi massif of South Korea. The Hongseong area is now extensively documented as an extension of the Dabie-Sulu collision belt in China. The Baekdong ultramafic body has a NWW elongation direction. This elongation trend is similar to the general trend of the Dabie-Sulu collision belt. The Bibong ultramafic body is elongated in a NNE direction and runs parallel to the direction of the main fault in the study area. The Baekdong ultramafic bodies show porphyroclastic and mylonitic textures while those at Bibong exhibit a mosaic texture. Both were grouped into peridotite and serpentinite based on their modal abundance of serpentine. In the olivine (Fo) vs. spinel [Cr# = Cr/ (Cr+Al)] diagram, both ultramafic rocks fall with in olivine spinel mantle array. The compositions of olivine, orthopyroxene and spinel indicate that the Baekdong ultramafic rock formed in deeper parts of the upper-mantle under passive margin tectonic setting. The SREE content of Baekdong ultramafic rock vary from 0.19 to 5.7, exhibits a flat REE pattern in the chondrite-normalized diagram, and underwent 5% partial melting. Conversely, large variation in SREE (0.5 21.53) was observed for Bibong ultramafic rocks with an enrichment of LREE with a negative slope and underwent 17 24% partial melting. The Baekdong ultramafic rocks experienced three stages of metamorphism after a high pressure residual mantle stage. The first stage of metamorphism occurred under the eclogite-granulite transitional facies (1123 911°C, >16.3 kb) the second under the granulite facies (825 740°C, 16.3 11.8 kb) and the third is the retrogressive metamorphism under amphibolite facies (782 718°C, 8.2 8.7 kb) metamorphism. The Baekdong ultramafic rocks had undergone high-P/T metamorphism during subduction of the South China Block, and experienced a fast isothermal uplift, and finally cooled down isobarically. Evidences for metamorphism were not identified in Bibong ultramafic rocks. Hence, the Baekdong ultramafic rocks with in the Hongseong area may indicate a link on the Korean counterpart of Dabie-Sulu collision belt between North and South China Blocks.  相似文献   
380.
Sr, Nd and Pb isotopic compositions of the Cenozoic basalts were analyzed from Baengnyeongdo Island, Jeongok, Ganseong, and Jejudo Island of Korea. They reveal relatively enriched Sr and Nd isotopic compositions (87Sr/86Sr = 0.703300.70555, 143Nd/144Nd = 0.512980.51256) compared with MORB.207Pb/204Pb and 208Pb/204Pb values of all the analyzed Korean basalts lie above the Northern Hemisphere Reference Line (NHRL) defined by Hart (1984). Pb isotopic compositions of basalts from Jejudo Islands (206Pb/204Pb = 18.6119.12, 207Pb/204Pb = 15.5415.69, 208Pb/204Pb = 38.9839.72) are significantly more radiogenic than the rest (206Pb/204Pb = 17.7218.03, 207Pb/204Pb = 15.4415.58, 208Pb/204Pb = 37.7738.64). The Cenozoic Korean basalts thus can be divided into two groups based on their Sr, Nd and Pb isotopic compositions. The north group reveals mixing between DMM and EM1 while the south group displays DMM-EM2 mixing. Such a distribution is the same as Chinese Cenozoic basalts and it can be interpreted that the subcontinental lithospheric mantle under Korea represents simple lateral continuation of the South and North China Blocks. We suggest that Korean continental collision zone cross the Korean Peninsula through the region between the north and south basalt groups of Korea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号